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Abstract

We consider a class of discrete-time stochastic control systems,
with Borel state and action spaces, and possibly unbounded costs.
The processes evolve according to the equation xt+1 = F (xt, at, ξt),
t = 0, 1, . . . , where the ξt are i.i.d. random vectors whose common
distribution is unknown. Assuming observability of {ξt}, we use the
empirical estimator of its distribution to construct adaptive policies
which are asymptotically discounted cost optimal .
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1 Introduction

We consider a class of discrete-time Markov control processes evolving ac-
cording to the equation

xt+1 = F (xt, at, ξt), t = 0, 1, . . . , (1)
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where xt, at and ξt are the state, action and random disturbance at time t
respectively, taking values on Borel spaces. F is a known measurable func-
tion. Moreover, {ξt} is an observable sequence of independent and identically
distributed (i.i.d.) random vectors with unknown distribution θ. The actions
that can be applied at any given time are selected according to rules known
as control policies directed to optimize a performance index. The optimal
control problem we are dealing with in this paper is to determine a con-
trol policy that minimizes an α-discounted cost criterion. This criterion is
expressed from some one stage cost functions c, possibly unbounded, and
depends on the unknown distribution θ. However, since θ is unknown, the
controller has to combine the actions selection with a statistical estimation
procedure of θ, and the resulting policy is called adaptive.

The main contribution of the paper is as follows: using the empirical
distribution of the disturbance process {ξt} to estimate θ, we construct two
adaptive policies which are asymptotically discounted cost optimal for the
system (1). The first adaptive policy is obtained via the so-called Principle of
Estimation and Control (PEC), which was described by Mandl in [17] as the
method of substituting the estimates into optimal stationary controls (see
also [16]). The PEC-policy is also known in the literature of the stochastic
control theory as certainty equivalence controller or naive feedback controller
(see [2]). We also construct an iterative adaptive policy which is a slight
extension of “The Non-stationary Value Iteration” policy introduced in [13].

The problem of constructing asymptotically discounted cost optimal adap-
tive policies for the system (1), when the distribution of the disturbance
process is unknown, has been studied in several contexts. For instance, this
problem is studied in [4, 9, 10, 13] considering either bounded costs or com-
pact state spaces. In recent papers [8, 14], these results are extended to the
cases of unbounded costs and general state and action spaces, but consid-
ering that the unknown disturbance distribution θ is absolutely continuous
(with respect to the Lebesgue measure on <k, the space of the disturbances
ξt), this implies the existence of an unknown density function. Hence, the
estimation of θ is obtained by means of an estimator of its density function.
However, the unboundedness assumption on the cost in [8, 14] makes difficult
the implementation of the density estimation process. For instance, the esti-
mator is defined by the projection (of an auxiliar estimator) on some special
set of density functions to ensure good properties of the estimated model.
Beyond the complexity of the estimation procedure, the assumption of ab-
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solutely continuity excludes the case of discrete distributions, which appears
in some inventory-production and queueing systems.

The construction of adaptive policies using the empirical distribution is
very general in the sense that the distribution θ can be arbitrary. Therefore
our work extends the results of above mentioned papers [4, 8, 9, 10, 13].

The paper is organized as follows. In Section 2 we introduce the Markov
control models we are concerned with and the definition of asymptotic dis-
count optimality. In Section 3 we construct the adaptive policies and state
the optimality in the main result, Theorem 3.8. It is proved in Section 4.
Finally, the assumptions and the results are illustrated in Section 5.

Remark 1.1 Given a Borel space X (that is, a Borel subset of a complete
and separable metric space) its Borel sigma-algebra is denoted by B(X), and
“measurable”, for either sets or functions, means “Borel measurable”. The
space of probability measures on X is denoted by IP (X). Let X and Y be
Borel spaces. Then a stochastic kernel Q(dx | y) on X given Y is a function
such that Q(· | y) is a probability measure on X for each fixed y ∈ Y, and
Q(B | ·) is a measurable function on Y for each fixed B ∈ B(X).

2 Markov control models

We consider a class of discrete-time Markov control models

M := (X, A, {A(x) ⊂ A|x ∈ X} , S, F, θ, c) (2)

associated to the system (1), satisfying the following conditions. The state
space X, the action space A and the disturbance space S are Borel spaces
endowed with their Borel σ-algebras (See Remark 1.1). For each state x ∈ X,
A(x) is a nonempty Borel subset of A denoting the set of admissible controls
when the system is in state x. The set

IK = {(x, a) : x ∈ X, a ∈ A(x)}

of admissible state-action pairs is assumed to be a Borel subset of the Carte-
sian product of X and A. The function F : X × A × S → X, as in (1),
is a given (known) measurable function and represents the dynamics of the
system. Moreover, θ ∈ IP (S) denotes the common–but unknown– distribu-
tion of the i.i.d. disturbances ξt in (1), which are S-valued random vectors
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defined on an underlying probability space (Ω,F , P ). Thus

θ(B) = P (ξt ∈ B) , t ∈ IN, B ∈ B(S). (3)

Finally, the cost-per-stage c(x, a) is a nonnegative measurable real-valued
function on IK, possibly unbounded.

We denote by Q the stochastic kernel representing the transition law
corresponding to (1), that is, for all t ∈ IN, (x, a) ∈ IK and B ∈ B(X),

Q(B|x, a) : = Prob [xt+1 ∈ B|xt = x, at = a]

=

∫

S

1B (F (x, a, s)) θ(ds)

= θ ({s ∈ S : F (x, a, s) ∈ B}) ,

where 1B(.) denotes the indicator function of the set B.

Throughout the paper, the probability space (Ω,F , P ) is fixed and a.s.
means almost surely with respect to P . In addition, we assume that the
realizations ξ0, ξ1, ... of the disturbance process and the states x0, x1, ... are
completely observable.

We define the spaces of admissible histories up to time t by IH0 := X
and IHt := (IK×S)t × X, t ≥ 1. A generic element of IHt is written as
ht = (x0, a0, ξ0, ..., xt−1, at−1, ξt−1, xt). A control policy (randomized, history-
dependent) is a sequence π = {πt} of stochastic kernels πt on A given IHt

such that πt(A(xt) | ht) = 1, for all ht ∈ IHt, t ∈IN. Let Π be the set of
all control policies and IF⊂ Π the subset of stationary policies. If necessary,
see for example [5, 6, 8, 9, 11, 12, 14, 15, 22] for further information on
those policies. As usual, each stationary policy π ∈IF is identified with a
measurable function f : X → A such that πt(· | ht) is concentrated at
f(xt) ∈ A(xt) for all ht ∈ IHt, t ∈IN, so that π is of the form π = {f, f, f, ...}.
In this case we denote π by f . For each f ∈ IF, we write

c(x, f) := c(x, f(x)) and F (x, f, s) := F (x, f(x), s)

for all x ∈ X and s ∈ S.

Let V (π, x) be the α-discounted cost using the policy π ∈ Π, given the
initial state x0 = x. That is,

V (π, x) := Eπ
x

[

∞
∑

t=0

αtc(xt, at)

]

, (4)
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where α ∈ (0, 1) is the so-called discount factor, and Eπ
x denotes the expec-

tation operator with respect to the probability measure P π
x induced by the

policy π, given the initial state x0 = x. The corresponding value (or optimal
cost) function is

V ∗(x) := inf
π∈Π

V (π, x), x ∈ X. (5)

A policy π∗ ∈ Π is said to be α-discount optimal (or simply α-optimal) for
the control model M if

V ∗(x) = V (π∗, x) for all x ∈ X. (6)

Since θ is unknown, we combine suitable statistical estimation methods
of θ and control procedures in order to construct the adaptive policy. That
is, we use the observed history of the system to estimate θ and then adapt
the decision or control to the available estimate. On the other hand, as the
discounted cost depends heavily on the controls selected at the first stages
(precisely when the information about the distribution θ is poor or deficient),
we can’t ensure the existence of an α-optimal adaptive policy (see e.g. [9]).
Thus the α-optimality of an adaptive policy will be understood in the fol-
lowing asymptotical sense:

Definition 2.1 a) [20] A policy π ∈ Π is said to be asymptotically discount
optimal for the control model M if

∣

∣V (k)(π, x) − Eπ
x [V ∗(xk)]

∣

∣ → 0 as k → ∞, for all x ∈ X,

where

V (k)(π, x) := Eπ
x

[

∞
∑

t=k

αt−kc(xt, at)

]

is the expected total discounted cost from stage k onward and at = πt(ht).

b) Let δ ≥ 0. A policy π is δ-asymptotically discount optimal for the control
model M if

lim sup
k→∞

∣

∣V (k)(π, x) − Eπ
x [V (xk)]

∣

∣ ≤ δ, ∀x ∈ X.

Clearly, discount optimality implies asymptotic discount optimality, which
in turn implies δ-asymptotic discount optimality.
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3 Main result

To estimate θ we use the empirical distribution {θt} ⊂ IP (S) of the distur-
bance process {ξt}, defined as follows. Let ν ∈ IP (S) be a given probability
measure. Then

θ0 := ν,

θt(B) :=
1

t

t−1
∑

i=0

1B(ξi), for all t ≥ 1 and B ∈ B(S). (7)

Lemma 3.1 (See [7].) θt converges weakly to θ a.s., that is,

∫

udθt →

∫

udθ a.s. as t → ∞,

for every real-valued, continuous and bounded function u on S. Equivalently,
if u is only lower semicontinuous (l.s.c.) and bounded below, then

lim inf
t→∞

∫

udθt ≥

∫

udθ a.s.

Assumption 3.2 a) For each x ∈ X, the set A(x) is σ-compact.
b) For each x ∈ X the function a → c(x, a) is l.s.c. on A(x). Moreover, there
exists a l.s.c. function W : X → [w̄,∞) such that supa∈A(x) c(x, a) ≤ W (x)
for all x ∈ X, where w̄ is a positive constant. (Recall that c is assumed to be
nonnegative.)
c)There exist three constants p > 1, β0 < 1 and b0 < +∞ such that for all
x ∈ X, a ∈ A(x) and t ≥ 1, the empirical distribution θt satisfies

∫

S

W p (F (x, a, s)) θt(ds) =
1

t

t−1
∑

i=0

W p (F (x, a, ξi)) ≤ β0W
p(x) + b0 a.s. (8)

Remark 3.3 Concerning the function W in Assumption 3.2(b), we require
it to be l.s.c. It is generally supposed to be only measurable [8]. This stronger
hypothesis on the cost function c is the price we have to pay for nothing
assuming on the unknown distribution θ, see the proof of Lemma 4.1.

In some applications it suffices to take W (x) := supa∈A(x) c(x, a), provided
that it is l.s.c. In general, one can try an exponential function, say W (x) :=
βeγx, for some suitable values of β > 0 and γ > 0 (See §5.2 bellow).
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We denote by L∞
W the normed linear space of all measurable functions u :

X → < with a finite norm ‖u‖W defined as

‖u‖W := sup
x∈X

|u(x)|

W (x)
. (9)

The statement of our main result, Theorem 3.8, requires as background
the following proposition, which is proved in [8] (see also [11, 14, 18].)

Proposition 3.4 Suppose that Assumption 3.2 holds. Then
a) For all π ∈ Π and x ∈ X, V (π, x) ≤ CW (x)/(1 − α), for some constant
C > 0. Hence, V ∗(x) ≤ CW (x)/(1 − α) for all x ∈ X, and so V ∗ is in L∞

W .
Moreover, V ∗ satisfies the α-discounted cost optimality equation

V ∗(x) = inf
a∈A(x)

(

c(x, a) + α

∫

S

V ∗(F (x, a, s))θ(ds)

)

, x ∈ X. (10)

b) For each t ∈IN, there exists a function Vt ∈ L∞
W such that

Vt(x) = inf
a∈A(x)

(

c(x, a) + α

∫

S

Vt(F (x, a, s))θt(ds)

)

a.s. , x ∈ X, (11)

and Vt(x) ≤ CW (x)/(1 − α).
c) For each t ∈IN and δ̂t > 0, there exists a stationary policy f̂t ∈IF such that

c(x, f̂t) + α

∫

S

Vt(F (x, f̂t, s))θt(ds) ≤ Vt(x) + δ̂t a.s. ∀x ∈ X. (12)

d) Let
{

Vt

}

be a sequence of functions defined as: V 0≡ 0 and

V t (x) = inf
a∈A(x)

(

c(x, a) + α

∫

S
V t−1 (F (x, a, s))θt(ds)

)

a.s. , x ∈ X, t ≥ 1.

(13)

Then, for each t ∈ IN and δt> 0, there exists f t∈IF such that

c(x, f t) + α

∫

S

V t−1

[

F (x, f t, s)
]

θt(ds) ≤V t (x)+ δt, x ∈ X. (14)
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Definition 3.5 Let {δ̂t} and
{

δt

}

be arbitrary convergent sequences of posi-

tive numbers, and let δ̂ := limt→∞ δ̂t and δ:= limt→∞ δt. In addition, let {f̂t}

and
{

f t

}

be sequences of functions in IF satisfying (12) and (14) respectively.

a) The adaptive policy π̂ = {π̂t} is defined as

π̂t(ht) = π̂t(ht; θt, δ̂t) := f̂t(xt), t ∈ IN.

b) The iterative adaptive policy π= {πt} is define as

πt (ht) =πt (ht; θt, δt) :=f t (xt), t ∈ IN. (15)

In (a) and (b), π̂0(x) and π0 (x) are any fixed action in A(x).

Remark 3.6 a) Observe that, by a result of Schäl [19], there is a policy
f̂∞ ∈ IF such that, for each x ∈ X, f̂∞(x) ∈ A(x) is an accumulation point
of {f̂t(x)}.

b) The construction of the adaptive control policy π̂ requires the calcula-
tion of Vt at each stage t ≥ 0 (i.e., solving an optimality equation for each
t ≥ 0) as opposed to the construction of π which is obtained recursively. This
is an obvious advantage from the point of view of the numerical implementa-
tion. Our main goal is to prove that both policies π̂ and π are asymptotically
discounted optimal, which is stated in Theorem 3.8.

We define

V ∗
W (x) :=

V ∗(x)

W (x)
, x ∈ X, (16)

and
VW := {V ∗

W (F (x, a, .)) : (x, a) ∈ IK} .

To prove our main result, Theorem 3.8, we need the equicontinuity on S
of the family of functions VW . This is supposed in the following.

Assumption 3.7 The family of functions VW is equicontinuous on S.

This assumption is discussed below in Section 5, where we first give two
different sets of sufficient hypotheses for Assumption 3.7. Both Assumptions
3.2 and 3.7 are then proved to be true for the example of an inventory-
production system.

With the above notation, we may now state our main result as follows.
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Theorem 3.8 Under Assumptions 3.2 and 3.7, we have
a) ‖Vt − V ∗‖W → 0 a.s. as t → ∞.

b) The adaptive policies π̂ and π are respectively δ̂ and δ-asymptotically
discount optimal. In particular, if δ̂ = 0 (resp. δ= 0), then the policy π̂
(resp. π) is asymptotically discount optimal.

c) If moreover F is continuous in a ∈ A(x) for all x ∈ X, and δ̂ = 0,
then f̂∞ is α-discount optimal for M.

It is well known that the existence of minimizer of the discounted cost
optimality equation (10) implies the existence of discounted cost optimal
stationary policies. Thus, it can happen that the assumptions made in this
paper (especially Assumption 3.2) are not sufficient to prove the existence
of a stationary optimal policy with a known distribution θ of the r.v. ξt

(see [12]). However Theorem 3.8(c) guarantees the existence of such a policy
while considering θ unknown.

4 Proofs

4.1 Preliminary lemmas

Before proving the theorem itself, we shall state some preliminary facts.

Lemma 4.1 Suppose that Assumption 3.2 holds. Then:
a) For all x ∈ X and a ∈ A(x),

∫

S

W p (F (x, a, s)) θ(ds) ≤ β0W
p(x) + b0. (17)

b) Letting β := β
1/p
0 and b := b

1/p
0 , we have for all x ∈ X, a ∈ A(x), and

t ∈IN,
∫

S

W (F (x, a, s)) θt(ds) ≤ βW (x) + b a.s. (18)
∫

S

W (F (x, a, s)) θ(ds) ≤ βW (x) + b. (19)

c) For all x ∈ X and π ∈ Π, we have

sup
t≥1

Eπ
x [W p(xt)] < ∞ and sup

t≥1
Eπ

x [W (xt)] < ∞.
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Proof: a) As W is l.s.c., there exists an increasing sequence {uk} of contin-
uous and bounded functions such that uk(x) ↑ W p(x) for all x ∈ X. Choose
arbitrary x ∈ X and a ∈ A(x). Then, by Assumption 3.2(c), for each k and
t in IN,

∫

S

uk (F (x, a, s)) θt(ds) ≤

∫

S

W p (F (x, a, s)) θt(ds) ≤ β0W
p(x) + b0,

and letting t → ∞, Lemma 3.1 yields

lim inf
t→∞

∫

S

uk (F (x, a, s)) θt(ds) ≥

∫

S

uk (F (x, a, s)) θ(ds).

Thus, for each k in IN,

∫

S

uk (F (x, a, s)) θ(ds) ≤ β0W
p(x) + b0,

and (17) follows by letting k → ∞.
b) See [8].
c) This part follows from (17) and (19). See [8]. �

Lemma 4.2 Under Assumptions 3.2 and 3.7, we have

lim
t→∞

sup
(x,a)∈IK

∣

∣

∣

∣

∫

S

V ∗ (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

∣

∣

∣

∣

= 0 a.s.

(20)

Proof: Choose and fix arbitrary x ∈ X and a ∈ A(x). Let µt and µ be two
measures on S defined as

µt(B) :=

∫

B

W (F (x, a, s)) θt(ds), (21)

µ(B) :=

∫

B

W (F (x, a, s)) θ(ds), (22)

for all B ∈ B(S). Observe that µ(B) = E [1B(ξ0)W (F (x, a, ξ0))]. Thus,
from Lemma 4.1(b), µ(B) ≤ βW (x) + b < ∞ as x is fixed. We can then

10



apply the law of large numbers to µt(B):

lim
t→∞

µt(B) = lim
t→∞

1

t

t−1
∑

i=0

1B(ξi)W (F (x, a, ξi))

= E [1B(ξ0)W (F (x, a, ξ0))]

= µ(B) a.s.,

that is, µt converges setwise to µ a.s., which of course implies that µt con-
verges weakly to µ (µt

w
→ µ).

On the other hand, from Assumption 3.7, the family of functions VW is
equicontinuous at each point s ∈ S. It is also uniformly bounded (by the
definition (16) of V ∗

W and Proposition 3.4(a)). Therefore VW is a µ-uniformity
class (see [3]), that is, since µt

w
→ µ, we have, as t → ∞,

sup
(x,a)∈IK

∣

∣

∣

∣

∫

S

V ∗ (F (x, a, s))

W (F (x, a, s))
µt(ds) −

∫

S

V ∗ (F (x, a, s))

W (F (x, a, s))
µ(ds)

∣

∣

∣

∣

→ 0 a.s.

Thus, from the definitions (21) and (22) of µt and µ, we get (20). �

We also need the following characterization of asymptotic discount opti-
mality.

Lemma 4.3 [20, 11] A policy π ∈ Π is asymptotically discount optimal for
the control model M if and only if, for x ∈ X,

Eπ
x [Φ(xt, at)] → 0 as t → ∞,

where

Φ(x, a) := c(x, a) + α

∫

S

V ∗ (F (x, a, s)) θ(ds) − V ∗(x), (x, a) ∈ IK, (23)

is the so-called discounted discrepancy function. (By (10), Φ is nonnegative.)

Remark 4.4 For δ ≥ 0, a policy π ∈ Π is δ-asymptotically discount optimal
for the control model M if

lim sup
t→∞

Eπ
x [Φ(xt, at)] ≤ δ, x ∈ X.
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4.2 Proof of Theorem 3.8

a) Let us define the operators

Tu(x) := inf
a∈A(x)

{

c(x, a) + α

∫

S

u (F (x, a, s)) θ(ds)

}

, (24)

Ttu(x) := inf
a∈A(x)

{

c(x, a) + α

∫

S

u (F (x, a, s)) θt(ds)

}

, (25)

for all x ∈ X and u ∈ L∞
W . From Assumption 3.2 and Lemma 4.1(b), T and

Tt map L∞
W to itself.

Now we fix an arbitrary number γ ∈ (α, 1) and define the function W
(x) := W (x) + d for x ∈ X, where d := b (γ/α − 1)−1. Let L∞

W
be the space

of measurable functions u : X → < with norm

‖u‖
W

:= sup
x∈X

|u(x)|

W (x)
< ∞.

Observe that the norms ‖.‖W and ‖.‖
W

are equivalent because

‖u‖
W

≤ ‖u‖W ≤ (1 + d) ‖u‖
W

. (26)

A consequence of [21, Lemma 2] is that the inequalities (18) and (19) im-
ply respectively that the operators Tt and T , t ∈IN, are contractions with
modulus γ, with respect to the norm ‖.‖

W
, i.e. for all u, v ∈ L∞

W
:

‖Tv − Tu‖
W

≤ γ ‖v − u‖
W

, (27)

‖Ttv − Ttu‖W
≤ γ ‖v − u‖

W
a.s. (28)

Thus, by (10) and (11), V ∗ and Vt are fixed points in L∞

W
of the operators

T and Tt, respectively, i.e.

TV ∗ = V ∗ and TtVt = Vt a.s. ∀t ∈ IN. (29)

Hence
‖V ∗ − Vt‖W

≤ ‖TV ∗ − TtV
∗‖

W
+ γ ‖V ∗ − Vt‖W

a.s.,

which implies that a.s.

‖V ∗ − Vt‖W
≤ 1

1−γ
‖TV ∗ − TtV

∗‖
W

(30)

≤
1

w̄(1 − γ)
sup

(x,a)∈IK

∣

∣

∣

∣

∫

S

V ∗ (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

∣

∣

∣

∣

.

12



For each t ∈IN let

nt := sup
(x,a)∈IK

∣

∣

∣

∣

∫

S

V ∗ (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

∣

∣

∣

∣

. (31)

Then, by (26),

‖V ∗ − Vt‖W ≤
(1 + d)nt

w̄(1 − γ)
a.s. (32)

Part (a) of Theorem 3.8 is then a consequence of (20).

b)Optimality of π̂. For each t ∈IN, we consider the approximate discrep-
ancy functions Φ̂t : IK→IR, given, as in (23), by

Φ̂t(x, a) := c(x, a) + α

∫

S

Vt (F (x, a, s)) θt(ds) − Vt(x) (33)

for all (x, a) ∈IK. Now, from the Definition 3.5 of the adaptive policy π̂, we
have that Φ̂t (., π̂t(.)) ≤ δ̂t for each t ∈IN. Thus

Φ (xt, π̂t(ht)) ≤
∣

∣

∣
Φ (xt, π̂t(ht)) − Φ̂t (xt, π̂t(ht)) + δ̂t

∣

∣

∣

≤ sup
a∈A(xt)

∣

∣

∣
Φ(xt, a) − Φ̂t(xt, a)

∣

∣

∣
+ δ̂t

≤ W (xt) sup
x∈X

W (x)−1 sup
a∈A(x)

∣

∣

∣
Φ(x, a) − Φ̂t(x, a)

∣

∣

∣
+ δ̂t. (34)

Moreover, from the definitions (23) and (33) of Φ and Φ̂t, we get, by
adding and subtracting the term α

∫

S
V ∗ (F (x, a, s)) θt(ds),

∣

∣

∣
Φ̂t(x, a) − Φ(x, a)

∣

∣

∣
≤ |V ∗(x) − Vt(x)|

+ α

∫

S

|Vt (F (x, a, s)) − V ∗ (F (x, a, s))| θt(ds)

+ α

∣

∣

∣

∣

∫

S

V ∗ (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

∣

∣

∣

∣

,

which combined with Lemma 4.1(b) yields
∣

∣

∣
Φ̂t(x, a, ) − φ(x, a)

∣

∣

∣
≤ ‖V ∗ − Vt‖WW (x)

+ α‖V ∗ − Vt‖W (βW (x) + b) + nt a.s.

13



for all (x, a) ∈IK and t ∈IN. Thus, using (32), we obtain

sup
x∈X

W (x)−1 sup
a∈A(x)

∣

∣

∣
Φ(x, a) − Φ̂t(x, a)

∣

∣

∣

≤ ‖V ∗ − Vt‖W + α‖V ∗ − Vt‖W

(

β + b
w̄

)

+ nt

w̄

≤
(

1 + α
(

β + b
w̄

))

‖V ∗ − Vt‖W + nt

w̄

≤
(

1 + α
(

β + b
w̄

)) nt(1+d)
w̄(1−γ)

+ nt

w̄

≤ B0nt a.s. (35)

where B0 :=
(

1 + α(β + b
w̄
)
)

(

1+d
w̄(1−γ)

)

+ 1
w̄
. Combining (34) and (35), we

have
Φ (xt, π̂t(ht)) ≤ B0W (xt)nt + δ̂t a.s.

Hence, to complete the proof of optimality of π̂, it only remains to show that

Eπ̂
x (W (xt)nt) → 0 as t → ∞. (36)

To do this, first observe from (20) that supt≥1 nt ≤ B1 < ∞ for some constant
B1. Furthermore, since θt doesn’t depend on π̂ and x, from (20) we have

nt−→0 P π̂
x − a.s. as t → ∞, (37)

whereas from Lemma 4.1(c),

sup
t≥1

Eπ̂
x (W (xt)nt)

p ≤ Bp
1 sup

t≥1
Eπ̂

x (W p(xt)) < ∞.

Therefore, using a general result on the uniform integrability of sequences
(see for example Lemma 7.6.9 in [1]), we conclude that {W (xt)nt} is P π̂

x -
uniformly integrable.

On the other hand, for arbitrary positive numbers ρ and l we have

P π̂
x (W (xt)nt > ρ) ≤ P π̂

x

(

nt >
ρ

l

)

+ P π̂
x (W (xt) > l) .

Thus Chebyshev’s inequality yields

P π̂
x (W (xt)nt > ρ) ≤ P π̂

x

(

nt >
ρ

l

)

+
Eπ̂

x (W (xt))

l
,

14



which together with Lemma 4.1(c) and (37) gives that {W (xt)nt} converges
to zero in probability, i.e.

W (xt)nt
P π̂

x−→ 0 as t → ∞. (38)

Finally, the L1 convergence (36) holds from (38) and the fact that {W (xt)nt}
is P π̂

x -uniformly integrable.

Optimality of π. First observe that

V t= Tt V t−1, t ≥ 1,

with Tt as in (25).
On the other hand, it is easy to see that under Assumption 3.2 there

exists a positive constant C such that, for all t ∈ IN,
∥

∥

∥V t

∥

∥

∥

W
≤C . (39)

Now from (25), (27)-(31) and (13), we have
∥

∥

∥
V ∗− V t+1

∥

∥

∥

W
≤

nt

w
+ γ

∥

∥

∥
V ∗− V t

∥

∥

∥

W
a.s. (40)

Letting λ := lim supt→∞

∥

∥

∥
V ∗− V t

∥

∥

∥

W
< ∞ (see Proposition 3.4 (a) and (39))

and taking the limit supremum in both sides of (40), from (20) we have that
λ ≤ γλ, which implies (since 0 < γ < 1) that λ = 0. Thus (see (26))

limt→∞

∥

∥

∥
V ∗− V t

∥

∥

∥

W
= 0 a.s.

Now, defining

Φt (x, a) := c(x, a) + α

∫

S
V t−1 (F (x, a, s)) θt(ds)− V t (x), x ∈ X,

from (13), (14) and (15), we get (see (34))

Φ (xt, πt (ht)) ≤ W (xt) sup
x∈X

W (x)−1 sup
a∈A(x)

∣

∣

∣
Φ(x, a)− Φt (x, a)

∣

∣

∣
+ δt . (41)

Moreover, for some constants B0 and B1 (see (35)),

sup
x∈X

W (x)−1 sup
a∈A(x)

∣

∣

∣
Φ(x, a)− Φt (x, a)

∣

∣

∣
≤B0

∥

∥

∥
V ∗− V t−1

∥

∥

∥

W
+ B1 (nt+nt−1) :=nt a.s.

(42)
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Combining (41) and (42) we obtain Φ (xt, πt (ht)) ≤ W (xt) nt + δt a.s. The
convergence Eπ

x (W (xt)nt) → 0 as t → ∞ is then proved as in (36)-(38). �

Before proving part c) of Theorem 3.8, let us give a last technical result:

Lemma 4.5 Under Assumptions 3.2 and 3.7, we have, for each x ∈ X and
a ∈ A(x)

lim
t→∞

∣

∣

∣

∣

∫

S

Vt (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

∣

∣

∣

∣

= 0 a.s.

Proof: Observe that
∫

S

Vt (F (x, a, s))θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

=

∫

S

[

Vt (F (x, a, s)) − V ∗ (F (x, a, s))
]

θt(ds)

+

∫

S

V ∗ (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

≤‖Vt − V ∗‖W (βW (x) + b)

+

∣

∣

∣

∣

∫

S

V ∗ (F (x, a, s)) θt(ds) −

∫

S

V ∗ (F (x, a, s)) θ(ds)

∣

∣

∣

∣

.

The last inequality follows from (18). Thus, Lemma 4.5 holds thanks to part
a) of Theorem 3.8 and (20). �

Proof of part c) of Theorem 3.8 For each x ∈ X, f̂∞(x) is an accumula-
tion point of {f̂t(x)}. That is to say, for each x ∈ X, there is a subsequence
{ti(x)} of {t} such that

f̂ti(x)(x) → f̂∞(x) as i → ∞.

Now we fix an arbitrary x ∈ X and replace t with ti(x) in (12). We get

c(x, f̂ti(x)) + α

∫

S

Vti(x)(F (x, f̂ti(x), s))θti(x)(ds) ≤ Vti(x)(x) + δti(x) a.s. (43)

Before taking the limit infimum in (43), first note that

lim inf
i→∞

∫

S

Vti(x)

(

F (x, f̂ti(x), s)
)

θti(x)(ds) ≥

∫

S

V ∗

(

F (x, f̂∞, s)
)

θ(ds). (44)

16



Indeed,

∫

S

Vti(x)

(

F (x, f̂ti(x), s)
)

θti(x)(ds)

=

[
∫

S

Vti(x)

(

F (x, f̂ti(x), s)
)

θti(x)(ds) −

∫

S

V ∗

(

F (x, f̂ti(x), s)
)

θ(ds)

]

+

∫

S

V ∗
(

F (x, f̂ti(x), s)
)

θ(ds),

which yields, by Lemma 4.5, that

lim inf
i→∞

∫

S

Vti(x)

(

F (x, f̂ti(x), s)
)

θti(x)(ds) ≥ lim inf
i→∞

∫

S

V ∗
(

F (x, f̂ti(x), s)
)

θ(ds).

Thus (44) follows by applying Fatou’s Lemma and as function F is continuous
in a ∈ A(x).

Now, taking the limit infimum in (43), we obtain

c(x, f̂∞) + α

∫

S

V ∗(F (x, f̂∞, s))θ(ds) ≤ V ∗(x), (45)

and so, by (10), equality holds in (45). In fact, as x was arbitrary, equality
holds in (45) for every x ∈ X, and therefore, f̂∞ is α-discount optimal for
M. �

5 Examples

5.1 Sufficient sets of conditions for Assumption 3.7

An obvious sufficient condition for Assumption 3.7 is that the disturbance
set S is countable (with the discrete topology). We next present other, less
obvious sufficient conditions.

Assumption 5.1 a) (X, ||.||) is a complete, separable, normed vector space.

b) The function V ∗
W (x) = V ∗(x)

W (x)
is convex.

c)The family of functions {F (x, a, .) : (x, a) ∈ IK} is equicontinuous on S.

Proposition 5.2 Under Assumptions 3.2 and 5.1, Assumption 3.7 –and
therefore Theorem 3.8– holds.

17



Proof: From [6], Assumptions 5.1(a), (b) imply that V ∗
W is Lipschitz:

there exists a constant L such that, for all x1 and x2 in X,

|V ∗
W (x1) − V ∗

W (x2)| ≤ L ‖x1 − x2‖ .

Let ε > 0. By Assumption 5.1 (c), there exists δ > 0 such that dS(s1, s2) < δ
implies

‖F (x, a, s1) − F (x, a, s2)‖ < ε, for all (x, a) ∈ IK,

where dS is the metric on S. Then, for all (x, a) ∈IK,

|V ∗
W (F (x, a, s1)) − V ∗

W (F (x, a, s2))| ≤ L ‖F (x, a, s1) − F (x, a, s2)‖ ≤ Lε.

Thus Assumption 3.7 is verified and Theorem 3.8 follows. �

We define the weighted total variation norm of a signed measure m on
B(X) as follows:

‖m‖TW
:=

∫

X

W (x) |m| (dx),

where |m| denotes the variation of the measure m.

Assumption 5.3 a)The family of functions {F (x, a, .) : (x, a) ∈ IK} is equicon-
tinuous on S.
b) Let dX be the metric on X. There exist three constants L0, L1 and L2 such
that for every (x1, a1), (x2, a2) ∈IK the following holds:

∣

∣

∣

∣

c(x1, a1)

W (x1)
−

c(x2, a2)

W (x2)

∣

∣

∣

∣

≤ L0dX(x1, x2),

‖Q(dy|x1, a1) − Q(dy|x2, a2)‖TW
≤ L1dX(x1, x2), (46)

|W (x1) − W (x2)| ≤ L2dX(x1, x2).

Proposition 5.4 Under Assumptions 3.2 and 5.3, Assumption 3.7 –and
therefore Theorem 3.8– holds.

Proof: First observe that for all x ∈ X and π ∈ Π,

V (π, x) :=Eπ
x

[

∞
∑

t=0

αtc(xt, at)

]

=

∫

A

[

c(x, a) + α

∫

X

V (π′, y)Q(dy|x, a)

]

π0(da|x),
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where π′ = {π′
t} is the “shifted” policy π′

t(·|ht) := πt+1(·|x, a, ht) for all
t = 0, 1, .... Thus, for arbitrary x1 and x2 in X, we have

∣

∣

∣

∣

V (π, x1)

W (x1)
−

V (π, x2)

W (x2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

A

[

c(x1, a)

W (x1)
+ α

∫

X

V (π′, y)

W (x1)
Q(dy|x1, a)

]

π0(da|x1)

−

∫

A

[

c(x2, a)

W (x2)
+ α

∫

X

V (π′, y)

W (x2)
Q(dy|x2, a)

]

π0(da|x2)

∣

∣

∣

∣

∣

∣

≤ sup
a1,a2

∣

∣

∣

∣

c(x1, a1)

W (x1)
−

c(x2, a2)

W (x2)

∣

∣

∣

∣

+ sup
a1,a2

∣

∣

∣

∣

∫

X

V (π′, y)

W (x1)
Q(dy|x1, a1) −

∫

X

V (π′, y)

W (x2)
Q(dy|x2, a2)

∣

∣

∣

∣

,

(47)

where the supremum is over all a1 ∈ A(x1) and a2 ∈ A(x2).
Now, for each a1 ∈ A(x1) and a2 ∈ A(x2), adding and subtracting the

term
∫

X
V (π′,y)
W (x2)

Q(dy|x1, a1), we have

I :=

∣

∣

∣

∣

∫

X

V (π′, y)

W (x1)
Q(dy|x1, a1) −

∫

X

V (π′, y)

W (x2)
Q(dy|x2, a2)

∣

∣

∣

∣

≤

∫

X

∣

∣

∣

∣

V (π′, y)

W (x1)
−

V (π′, y)

W (x2)

∣

∣

∣

∣

Q(dy|x1, a1)

+

∫

X

V (π′, y)

W (x2)
|Q(dy|x1, a1) − Q(dy|x2, a2)|

≤

∣

∣

∣

∣

1

W (x1)
−

1

W (x2)

∣

∣

∣

∣

∫

X

V (π′, y)Q(dy|x1, a1)

+
1

W (x2)

∫

X

V (π′, y) |Q(dy|x1, a1) − Q(dy|x2, a2)| .
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Moreover, from Proposition 3.4 (a), (19) and Assumption 5.3 (b),

I ≤
C |W (x1) − W (x2)|

(1 − α)W (x1)W (x2)

∫

X

W (y)Q(dy|x1, a1)

+
C/(1 − α)

W (x2)

∫

X

W (y) |Q(dy|x1, a1) − Q(dy|x2, a2)|

≤
C |W (x1) − W (x2)|

(1 − α)W (x1)W (x2)
(βW (x1) + b)

+
C/(1 − α)

W (x2)
‖Q(·|x1, a1) − Q(·|x2, a2)‖TW

≤
Cβ |W (x1) − W (x2)|

(1 − α)W (x2)

+
Cb |W (x1) − W (x2)|

(1 − α)W (x1)W (x2)

+
C/(1 − α)

W (x2)
‖Q(·|x1, a1) − Q(·|x2, a2)‖TW

≤
CβL2

(1 − α) w
d(x1, x2) +

CbL2

(1 − α) w
2 dX(x1, x2) +

C

w (1 − α)
L1dX(x1, x2)

= L′dX(x1, x2), (48)

where L′ := C
w(1−α)

[

L2

(

β + b
w

)

+ L1

]

.

Combining (47) and (48), and by Assumption 5.3 (b),
∣

∣

∣

∣

V (π, x1)

W (x1)
−

V (π, x2)

W (x2)

∣

∣

∣

∣

≤ L0d(x1, x2) + L′d(x1, x2) = L∗d(x1, x2), (49)

where L∗ := L0 + L1.

On the other hand, from (16) we have

|V ∗
W (x1) − V ∗

W (x2)| =

∣

∣

∣

∣

infπ∈Π V (π, x1)

W (x1)
−

infπ∈Π V (π, x2)

W (x2)

∣

∣

∣

∣

≤ sup
π∈Π

∣

∣

∣

∣

V (π, x1)

W (x1)
−

V (π, x2)

W (x2)

∣

∣

∣

∣

,

which, together with (49) yields

|V ∗
W (x1) − V ∗

W (x2)| ≤ L∗d(x1, x2).

Hence, V ∗
W is Lipschitz. The proof is now completed as in the proof of

Proposition 5.2. �
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5.2 An inventory-production system

We consider an inventory-production system of the form

xt+1 = (xt + at − ξt)
+, t = 0, 1, ..., (50)

x0 given, with state space X = [0,∞) and action set A(x) = A = [0, a∗]
for all x ∈ X, for some a∗ > 0. In addition the random variables ξ0, ξ1, ...,
are i.i.d, having a discrete distribution with values in S = {0, 1, 2, ....}, and
satisfying that

P [ξ0 > a∗] = 1. (51)

In (50), xt represents the stock level at the beginning of period t, the
control at is the quantity ordered or produced at the beginning of period t,
and the random variable ξt is the demand during that period.

In general, for certain class of inventory systems, we can take the one-
stage cost function of the form (see, for instance, [2, 5, 22]):

c(x, a) = G(x + a) + c0a, (x, a) ∈ IK, (52)

where c0 > 0 is the unit production (or purchasing) cost, and G is a convex
function such that limy→∞ G(y) = +∞, representing the cost for excess in-
ventory and the holding cost. In the context of our example, we suppose in
addition that the cost in (52) satisfies

sup
a∈A

c(x, a) ≤b eλx, for all x ∈ X,

where b and λ are arbitrary positive constants.

Clearly, the Assumptions 3.2 (a) and 3.7 are satisfied. The Assumptions
3.2 (b) and (c) follows taking W (x) :=b eλx and from the following relations:
for some p > 1, and all x ∈ X, a ∈ A,

1

t

t−1
∑

i=0

b epλ(x+a−ξi)
+

=
1

t

t−1
∑

i=0

b epλ(x+a−ξi)
+

1[ξi≥x+a] +
1

t

t−1
∑

i=0

b epλ(x+a−ξi)
+

1[ξi<x+a]

≤ b +
b epλx

t

t−1
∑

i=0

epλ(a∗−ξi)1[ξi<x+a]

≤ β0 b epλx + b0 a.s.,

where b0 :=b and β0 := 1
t

∑t−1
i=0 epλ(a∗−ξi). Note that β0 < 1 by (51).
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