
Time and Ratio Expected Average Cost

Optimality for Semi-Markov Control Processes on

Borel Spaces

Fernando Luque-Vásquez and Oscar Vega-Amaya

April 24, 2003

Abstract

We deal with semi-Markov control models with Borel state and con-
trol spaces, and unbounded cost functions under the ratio and the time
expected average cost criteria. Under suitable growth conditions on the
costs and the mean holding times together with stability conditions on
the embedded Markov chains, we show the following facts: (i) the ratio
and the time average costs coincide in the class of the stationary policies;
(ii) there exists an stationary policy which is optimal for both criteria.
Moreover, we provide a generalization of the classical Wald’s Lemma to
semi-Markov processes. These results are obtained combining the exis-
tence of solutions of the average cost optimality equation and the Optional
Stopping Theorem.

1 Introduction

This paper deals with semi-Markov control models (SMCMs) with Borel state
and control spaces, unbounded costs and holding mean times. We consider the
two main expected average cost criteria studied in SMCMs, namely, the ratio

expected average cost (ratio-EAC) criterion and the time expected average cost

(time-EAC) criterion. It is well-known that these criteria in general differ even
for the case of finite state and control spaces (see [4]). In the present paper under
stability conditions and suitable growth assumption on the cost we show that
these criteria coincide when the processes are controlled by stationary policies
and also that there exists an stationary policy which is optimal for both criteria;
thus, the optimality criteria defined by the ratio-EAC criterion and the time-
EAC criterion are equivalent. As a by-product we also obtain a generalization of
the classical Wald’s Lemma in renewal theory to semi-Markov processes which
is interesting by itself.

The ratio-EAC criterion has been widely studied in many works (see, e.g.
[3], [4], [5], [12], [19], [21], [23], [24],[25] and [29]) but there are only few authors
that consider the time-EAC (see, e.g. [4], [15], [17], [23], [24], [25] and [30]) and
most of them deal with the countable state space and/or use bounded costs.
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The approach we use combine some results on the existence of solutions of
the Poisson equation for the ratio-EAC criterion and the Optional Stopping
Theorem (see [1] p. 279). A similar approach was previously used in [15] but
our analysis is more direct and we do require neither to assume the boundness
of the mean holding time function nor to impose a uniform integrability on it
as it is done in the mentioned reference.

The remainder of the paper is organized as follows. In Section 2 we introduce
the SMCM we will be dealing with and in Section 3 we introduce the perfor-
mance criteria. The assumptions and main results are stated in Section 4 and
the proofs are given in Section 5.

We will use the following notation. A Borel set, say X, of a complete and
separable metric space is called a Borel space, and it is endowed with the Borel
σ-algebra B(X). If X and Y are Borel spaces, a stochastic kernel on X given Y is a
function P (· | ·) such that P (· | y) is a probability measure on X for every y ∈ Y

and P (B | ·) is a (Borel-) measurable function on Y for every B ∈ B(X). We
denote by N (respectively N0) the set of positive (resp. nonnegative) integers;
R (resp., R+) denotes the set of real (resp., nonnegative) numbers.

2 The model

We consider a semi-Markov control model (sMCM) specified by

(X,A, {A(x) : x ∈ X}, Q, G, C),

where:

• The state space X and the control space A are both Borel spaces.

• For each x ∈ X, the subset A(x) of A is the set of admissible controls for
the state x. We assume that the admissible pair set

K:={(x, a) : x ∈ X, a ∈ A(x)},

is a Borel subset of the Cartesian product X×A and also that it contains
the graph of a measurable function from X to A. The latter condition
guarantees that the class F of measurable functions f : X → A satisfying
the constraint f(x) ∈ A(x), for every x ∈ X, is non-empty.

• The transition law Q(B|x, a), with B ∈ B(X) and (x, a) ∈ K, is a stochas-
tic kernel on X given K.

• The conditional distribution of holding (or sojourn) times G(t|x, a, y) is a
distribution function on R+ := [0,∞) for each fixed (x, a, y) ∈ K×X and
a measurable function on K × X for each fixed time t ∈ R+. Let

F (t|x, a) :=

∫

X

G(t|x, a, y)Q(dy|x, a) ∀(x, a) ∈ K, t ∈ R+ (1)

the (unconditional) distribution of holding (or sojourn) times.
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• Finally, the measurable function C defined on K×R+ is the cost function.

A semi-Markov control model can be thought of as a model of a stochastic
system evolving as follows: the system is observed at time s = 0 in some state
x0 = x ∈ X and it is chosen a control a0 = a ∈ A(x); then, the system
remains in state x0 = x for a nonnegative random time δ1 with distribution
function given by F (·|x, a) The cost for operating the system up to any time t
prior to δ1 is given as C(x, a, t). At time δ1, the system moves to a new state
x1 = y ∈ X according to the probability measure Q(·|x, a) and, immediately
after the transition occurs, a new control a1 = a′ ∈ A(y) is chosen, and so forth.
Thus, let xn, an and δn+1 be the state of the system immediately after the nth

transition, the control chosen at that epoch and the holding or sojourn time,
respectively. Then, the epoch for the nth transition is given by

Tn := Tn−1 + δn n ∈ N, and T0 := 0, (2)

and the number of transitions up to time t is given as

N(t) := sup{n ≥ 0 : Tn ≤ t}, t ≥ 0. (3)

Now, for each n ∈ N0, define the set of admissible histories until the nth

transition by

H0 := X, Hn := (K×R+)n × X for n ∈ N.

Thus, a control policy π = {πn} is a sequence of stochastic kernels on A given
Hn satisfying the constraint

πn(A(xn)|hn) = 1 ∀hn = (x0, a0, δ1, ..., xn−1, an−1, δn, xn) ∈ Hn.

A policy π = {πn} is said to be a (deterministic) stationary policy if there
exists f ∈ F such that πn(·|hn) is concentrated at f(xn) for each integer number
n ≥ 0. We denote by Π the class of all policies and, following a usual convention,
identify the subclass of stationary policies with F.

As it is well-known, for each policy π ∈ Π and initial state x0 = x ∈ X, there
exists a probability measure P π

x on the measurable space (Ω,F) which governs
the evolution of the process {(xn, an, δn+1)}, where Ω := (X × A×R+)∞ and
F is the corresponding product σ-algebra. We denote by Eπ

x the expectation
operator with respect to the probability measure P π

x .

Throughout the paper we shall use the following notation. For a measurable
function v on K and f ∈ F, let

vf (x) := v(x, f(x)) x ∈ X. (4)

In particular, for the transition law we write

Qf(·|x) := Q(·|x, f(x)) x ∈ X. (5)
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Note that, for an arbitrary policy π ∈ Π, the distribution of the variable
state xn may depend on the evolution of the process during the first n − 1
transitions. However, under a stationary policy f ∈ F, the process {(xn, Tn)}
is a Markov renewal process with semi-Markov kernel P (x, B, t) =

∫
B

G(t |
x, a, y)Qf (dy | x) and the state process {xn} is a (homogeneous) Markov chain
with transition probability Qf (·|·). For the latter case, we denote by Qn

f (·|·) the
n-step transition probability.

The reader can found an nice introduction to (noncontrolled) Markov re-
newal processes and semi-Markov processes in [18].

3 Expected average cost criteria

Now we introduce the criteria which we are interested in, namely, the so-called
ratio expected average cost and the time expected average cost. Thus, for each
policy π ∈ Π and initial state x0 = x ∈ X, let

Jt(π, x) := Eπ
x

N(t)∑
k=0

C(xk, ak, δk+1), (6)

be the expected cost up to time t > 0. Then, the time expected average cost

(time EAC) is defined by

J(π, x) := lim sup
t→∞

1

t
Jt(π, x). (7)

Now, for each n ∈ N, let

Φn(π, x) := Eπ
x

n−1∑
k=0

C(xk, ak, δk+1) (8)

be the expected cost up to the nth transition; thus, the ratio expected average

cost (ratio EAC) is given as

Φ(π, x) := lim sup
n→∞

1

Eπ
x Tn

Φn(π, x). (9)

A policy π∗ ∈ Π is said to be time expected average cost (time EAC-) optimal

if

J(π, x) ≥ J(π∗, x) ∀x ∈ X, π ∈ Π.

Similarly, a policy π∗ is said to be ratio expected average cost (ratio EAC-)
optimal if

Φ(π, x) ≥ Φ(π∗, x) ∀x ∈ X, π ∈ Π.

The finite horizon expected costs (6) and (8), as well as the infinite expected
average costs (7) and (9), can be expressed in a slightly different but useful way
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by considering the mean holding times

τ(x, a) :=

∫ ∞

0

sF (ds|x, a) (x, a) ∈ K, (10)

and the mean costs

Ĉ(x, a) :=

∫ ∞

0

C(x, a, s)F (ds|x, a) (x, a) ∈ K. (11)

Thus we have

J(π, x) = lim sup
t→∞

1

t
Eπ

x

N(t)∑
k=0

Ĉ(xk, ak), (12)

Φ(π, x) = lim sup
n→∞

Eπ
x

∑n−1
k=0 Ĉ(xk, ak)

Eπ
x

∑n−1
k=0 τ(xk, ak)

, (13)

for all policy π ∈ Π and all initial state x ∈ X. In fact, one can verify using
conditional expectation properties that

Φn(π, x) := Eπ
x

n−1∑
k=0

Ĉ(xk, ak) and Eπ
x Tn = Eπ

x

n−1∑
k=0

τ(xk, ak)

which yields (13) provided that all the expectations involved are well defined.
Now, to obtain (12), observe that

Jt(π, x) =
∞∑

k=0

Eπ
x C(xk, ak, δk+1)I[Tk≤t] ∀x ∈ X, π ∈ Π, t ∈ R+

=
∞∑

k=0

Eπ
x

{
I[Tk≤t]E

π
x [C(xk, ak, δk+1) |hk, ak ]

}

=
∞∑

k=0

Eπ
x Ĉ(xk, ak)I[Tk≤t],

where hk = (x0, a0, δ1, ..., xk−1, ak−1, δk, xk), with x0 = x and k ∈ N0. Thus, we
obtain

Jt(π, x) = Eπ
x

N(t)∑
k=0

Ĉ(xk, ak) ∀x ∈ X, π ∈ Π, t ∈ R+, (14)

from which (12) follows.
Finally, it is worth mentioning that in general the time and the ratio EAC

criteria differ (see [4], Example 3.1). For the denumerable state space case,
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Ross [23] shows that these criteria coincide for stationary policies under a re-
currence/ergodic condition; Jaskiewicz in [15] obtains the same result for un-
bounded costs and Borel spaces under a stability hypothesis similar to the used
in the present paper, but she additionally suppose that the mean holding time
function is bounded and impose on it a uniform integrability condition.

4 Assumptions and Main Results

We begin imposing a growth condition on both the mean cost and the mean
holding time functions introduced in (10) and (11), respectively.

Assumption 4.1. There exist a measurable function W (·) ≥ 1 on X and a
constant M > 0 such that

max{|Ĉ(x, a)|, τ(x, a)} ≤ MW (x) ∀(x, a) ∈ K.

Throughout the paper we shall use the following notation: for a measurable
function u(·) on X define the W -weighted norm, W-norm for short, as

||u||W := sup
x∈X

|u(x)|

W (x)

and denote by BW (X) the Banach space of measurable functions with finite
W-norm. Moreover, for a function u(·) and a measure µ(·) on X, let

µ(u) :=

∫

X

u(y)µ(dy)

whenever the integral is well-defined.

Now we introduce a second set of conditions which ensure that the “embed-
ded” Markov chains induced by the stationary policies are well behaved in the
long-term.

Assumption 4.2. There exist a non-trivial measure ν(·) on X, a nonnegative
measurable function φ(·, ·) on K and a positive constant β < 1 such that:

(a) ν(W ) < ∞;

(b) Q(B|x, a) ≥ ν(B)φ(x, a) ∀B ∈ B(X), (x, a) ∈ K;

(c)

∫

X

W (y)Q(dy|x, a) ≤ βW (x) + φ(x, a)ν(W ) ∀(x, a) ∈ K;

(d) For each f ∈ F there exists a state xf ∈ X such that φf (xf ) 6= 0.

Several variants of Assumption 4.2 have been already considered in a number
of papers to study controlled Markov and semi-Makov processes ([7], [10], [11],
[12], [21], [29]) as well as Markov and semi-Markov games ([9], [13], [14], [16],
[20]). In fact, the stability conditions in Assumption 4.2 are the same that
the used in [6], [26], and [27], except for the fact that the latter references
suppose, instead of Assumption 4.2(d), that ν(φf ) > 0 for all f ∈ F, which
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is obviously a stronger condition. The next remark collects some of the most
relevant consequences of Assumption 4.2 with regards of the present work, which
can be proved as in [26].

Remark 4.3. Suppose that Assumptions 4.1 and 4.2 hold and let f be a fixed
but arbitrary policy in F. Then:

(a) The transition law Qf (·|·) is positive Harris recurrent ; hence, in particular,
it admits a unique invariant probability measure µf (·), that is,

µf (B) =

∫

X

Qf(B|x)µf (dx) ∀B ∈ B(X). (15)

Moreover, µf (W ) < ∞; thus, µf (|u|) < ∞ for all function u(·) in BW (X).

(b) For every function u(·) in BW (X), we have

lim
n→∞

1

n
Ef

x

n−1∑

k=0

u(xk) = µf (u) ∀x ∈ X; (16)

thus, in particular,

lim
n→∞

1

n
Ef

xu(xn) = 0 ∀x ∈ X. (17)

(c) For each function u(·) in BW (X), there exists a function hu(·) in BW (X)
that solves the Poisson equation

hu(x) = u(x) − µf (u) +

∫

X

hu(y)Qf (dy|x) ∀x ∈ X. (18)

It is important to mention, on one hand, that Assumption 4.2 as well as
the variants used in the previously cited papers yields the property known as
W-geometric ergodicity (see, for instance, [8], [9] and [22]): for each f ∈ F, there
exist positive constants λf < 1 and Mf < ∞ such that

||Qn
f u − µf (u)||W ≤ Mfλn

f ∀u ∈ BW (X), n ∈ N.

Using this property it is easy to check that the function

h(x) :=

∞∑

k=0

[Qn
f u(x) − µf (u)] ∀x ∈ X,

is in BW (X) and that it satisfies the Poisson equation (18). On the other hand,
it turns out that Assumption 4.2 is a contraction property, which is exploited
in [26] to give pretty direct proofs of all results in Remark 4.3 using solely
fixed-point arguments.

As it is well-known the relevance of the Poisson equation comes from the
fact that it allows the analysis of the accumulated cost up to the time of the nth

transition, specially when n is large enough or tends to infinity. To illustrate
this fact suppose that
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τ(x, a) > 0 ∀(x, a) ∈ K, (19)

and define

ρf :=
µf (Ĉf )

µf(τf )
∀f ∈ F. (20)

Note that under Assumptions 4.1 and 4.2, these constants are finite because
of Remark 4.3(a). Thus, for a stationary policy f ∈ F, letting u(·) = Ĉf (·) −
ρfτf (·), from Remark 4.3(c) we have a function hf (·) in BW (X) satisfying the
Poisson equation

hf (x) = Ĉf (x) − ρfτf (x) +

∫

X

hf(y)Qf (dy|x) ∀x ∈ X. (21)

Then, iterations yield

Φn(f, x) = ρfEf
x

n−1∑

k=0

τf (xk) + hf(x) − Ef
xhf (xn) ∀x ∈ X, n ∈ N. (22)

Hence, as a direct consequence of Remark 4.3(b) and (19), we have

Φ(f, x) = ρf ∀x ∈ X. (23)

Proceeding as above, for each f ∈ F, we also have a function ĥf ∈ BW (X),
such that

ĥf(x) = Ĉf (x) − µf (Ĉf ) +

∫

X

ĥf (y)Qf (dy|x) ∀x ∈ X, (24)

which implies

Ef
x

n−1∑

k=0

Ĉf (xk) = nµf (Ĉf ) + ĥf(x) − Ef
x ĥf (xn) ∀x ∈ X, n ∈ N. (25)

Now, to get a continuous-time analogous of (22) and (25) we need to reinforce
the condition (19) as follows:

Assumption 4.4. There exist positive constants σ and ε such that

F (σ|x, a) ≤ 1 − ε ∀(x, a) ∈ K.

The condition in Assumption 4.4 is mainly used in the related literature
to guarantee that the regularity property holds, that is, to preclude the semi-
Markov processes experience infinitely many transitions on any bounded interval
of time. However, it is worth mentioning that under Assumption 4.2 and condi-
tion (19) we have of course the regularity property for the semi-Markov processes
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induced by stationary policies. In fact, the paper [28] shows that the regularity
property holds under the weaker condition of Harris recurrence. Thus, in the
present paper, the role of Assumptions 4.4 is to assure the stronger properties
stated in the first part of the next lemma.

Lemma 4.5. If Assumption 4.4 holds, then:

(a) Eπ
x N(t) ≤

t + σ

εσ
∀x ∈ X,π ∈ Π, t > 0;

(b) τ(x, a) ≥ εσ ∀(x, a) ∈ K.

The first part of Lemma 4.5 comes from [30], whereas the second one can be
easily obtained using the integration by parts rule.

Theorem 4.6. Suppose that Assumptions 4.1, 4.2 and 4.4 hold and let hf (·)

and ĥf (·) solutions of the Poisson equations (21) and (24), respectively. Then,
for each f ∈ F :

Jt(f, x) = ρfEf
x

N(t)∑

k=0

τf (xk) + hf (x) − Ef
xhf (xN(t)+1), (26)

and
Jt(f, x) = µf (Ĉf )Ef

x [N(t) + 1] + ĥf(x) − Ef
x ĥf (xN(t)+1) (27)

for all x ∈ X and t > 0.

Notice that both expressions (26) and (27) give ways for analyzing the long-
term behavior of the costs in continuous time, but the latter one has the appeal-
ing that it can be thought of as a generalization of the Wald’s Lemma in the
classical renewal theory. In words, it states that the expected cost up to time
t > 0 equals the steady-state cost times the expected number of transitions up
to time t plus some terms correcting the deviation from the steady-state regime.

Theorem 4.7. Suppose that Assumptions 4.1, 4.2 and 4.4 hold. Then

J(f, x) = Φ(f, x) = ρf ∀x ∈ X, f ∈ F.

Our next main result, Theorem 4.9, states two facts: the equality of the
optimal values of the ratio and the time expected average costs and the existence
of an stationary optimal policy for both criteria. Now, the standard way to prove
the existence of ratio EAC-optimal stationary policies is provided by the so-
called Average Cost Optimality Equation (see Proposition 5.4, Section 5), which
can be thought as a “generalization” of the Poisson equation (21). However, to
get this extension is needed to impose some continuity/compactness conditions
on the model.

Assumption 4.8. For each state x ∈ X :

(a) A(x) is a compact subset of A;

(b) Ĉ(x, ·) is lower semicontinuous on A(x);
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(c) τ(x, ·) and φ(x, ·) are continuous functions on A(x);

(d) the transition law Q(·|x, ·) is strongly continuous on A(x), that is, the
mapping

a 7−→

∫

X

u(y)Q(dy|x, a)

is continuous for each bounded measurable function u on X. Additionally, the
above condition holds with u = W.

Theorem 4.9. Suppose that Assumptions 4.1, 4.2, 4.4 and 4.8 hold. Then there
exists a triplet (ρ∗, f∗, h∗), where ρ∗ is a constant, f∗ ∈ F, and h∗ ∈ BW (X)
such that

h∗(x) = inf
π∈Π



Jt(π, x) − ρ∗Eπ
x

N(t)∑

k=0

τ(xk, ak) + Eπ
x h∗(xN(t)+1)





= Jt(f
∗, x) − ρ∗Ef∗

x

N(t)∑

k=0

τf∗(xk) + Ef∗

x h∗(xN(t)+1).

for all x ∈ X and t > 0. Hence, ρ∗ is the time EAC-optimal value and f∗ is
time EAC-optimal. Thus, from Proposition 4.9,

J(f∗, x) = Φ(f∗, x) = ρ∗ = inf
π∈Π

J(π, x) = inf
π∈Π

Φ(π, x) ∀x ∈ X.

5 Proofs

Lemma 5.1. Suppose that Assumptions 4.1, 4.2 and 4.4 hold. Then, there is
a constant L such that

Eπ
x

N(t)∑

k=0

∣∣∣Ĉ(xk, ak)
∣∣∣ ≤ LW (x)

t + σ

εσ
, (28)

and

Eπ
x

N(t)∑

k=0

τ(xk, ak) ≤ LW (x)
t + σ

εσ
, (29)

hold for all policy π ∈ Π, initial state x ∈ X and time t > 0.

Proof of Lemma 5.1. Observe, by Assumption 4.2(c), that

Eπ
x [W (xn) | x0, δ1, ..., δk] ≤ [1 +

ν(W )

1 − β
]W (x) ∀n, k ∈ N, x ∈ X. (30)
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Then, letting L′ := [1 + ν(W )/(1 − β)], we have

Eπ
x

N(t)∑

k=0

∣∣∣Ĉ(xk, ak)
∣∣∣ =

∞∑

k=0

Eπ
x

∣∣∣Ĉ(xk, ak)
∣∣∣ I[Tk≤t] ≤ M

∞∑

k=0

Eπ
x [W (xk)I[Tk≤t]]

= M

∞∑

k=0

Eπ
x [I[Tk≤t]E

π
x [W (xk) | x0, δ1, ..., δk]]

≤ ML′W (x)Eπ
x

∞∑

k=0

I[Tk≤t]

= LW (x)Eπ
x N(t) ≤ LW (x)

t + σ

εσ
,

with L = ML′. In a similar way we can prove (29).�

Lemma 5.2. Suppose that Assumptions 4.1, 4.2 and 4.4 hold. Then, for each
x ∈ X and π ∈ Π,

lim
t→∞

1

t
Eπ

x W (xN(t)+1) = 0. (31)

Proof of Lemma 5.2. For each t > 0,

Eπ
x W (xN(t)+1) = Eπ

x

∞∑

k=1

W (xk)I[Tk−1≤t<Tk]

=

∞∑

k=1

Eπ
x [I[Tk−1≤t<Tk]E

π
x [W (xk) | x0, δ1, ..., δk]]

≤ L′W (x)

∞∑

k=1

P π
x [N(t) = k − 1] = L′W (x).

from which (31) follows.�

An immediate consequence of Lemma 5.2 is that for each u ∈ BW (X),

lim
t→∞

1

t
Eπ

x u(xN(t)+1) = 0 ∀x ∈ X,π ∈ Π. (32)

Analogously we can show that

lim
t→∞

1

t
Eπ

x u(xN(t)) = 0. (33)

Proof of Theorem 4.6. Let f be a fixed but arbitrary stationary policy and
let hf (·) be a solution of the Poisson equation
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hf (x) = Ĉf (x) − ρfτf (x) +

∫

X

hf(y)Qf (dy|x) ∀x ∈ X.

Next, introduce the process

Mn :=

n−1∑

k=0

Ĉf (xk)−ρf

n−1∑

k=0

τf (xk)+hf (xn)−hf (x0) for n ≥ 1, and M0 := 0,

and observe that {Mn} is a martingale with respect to the filtration

Fn := σ(x0, a0, δ1, ..., xn−1, an−1, δn, xn) ∀n ≥ 0.

Thus, noting that for t > 0 the random variable N(t) + 1 is a stopping time
with respect to {Fn}, and using (28) and (29) we have that

Ef
x

∣∣MN(t)+1

∣∣ < ∞ ∀x ∈ X, t > 0,

and also that

lim
n→0

Ef
x |Mn| I[N(t)≥n] = 0 ∀x ∈ X, t > 0.

Thus, by the Optional Stopping Theorem, we obtain

Ef
xMN(t)+1 = Ef

x

N(t)∑

k=0

[Ĉf (xk) − ρfτf (xk) + hf (xN(t)+1) − hf (x0)]

= Ef
xM1 = 0.

Hence,

Jt(f, x) = ρfEf
x

N(t)∑

k=0

τf (xk) + hf (x) − Ef
xhf (xN(t)+1) ∀x ∈ X, t > 0,

which proves the first statement of the theorem.
The proof of the second part follows the same arguments but now considering

a function ĥf (·) in BW (X) that solves the Poisson equation

ĥf (x) = Ĉf (x) − µf (Ĉf ) +

∫

X

ĥf(y)Qf (dy|x) ∀x ∈ X.�

Lemma 5.3. Suppose that Assumptions 4.1, 4.2 and 4.4 hold. Then,

lim
t→∞

1

t
Ef

x [N(t) + 1] =
1

µf (τf )
∀x ∈ X,f ∈ F.
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Proof of Lemma 5.3. Fix f ∈ F and let wf ∈ BW (X) a function satisfying
the Poisson equation

wf (x) = τf (x) − µf (τf ) +

∫
wf (y)Qf (dy|x) ∀x ∈ X.

Thus, as in the proof of Theorem 4.6, the Optional Stopping Theorem yields

Ef
x

N(t)∑

k=0

τf (xk) = µf (τf )Ef
x [N(t) + 1] + w(x) − Ef

xw(xN(t)+1), (34)

for all x ∈ X and t > 0. Also, by using properties of the conditional expectation
one can show that

Ef
xTN(t) = Ef

x

N(t)−1∑

k=0

τf (xk) and Ef
xTN(t)+1 = Ef

x

N(t)∑

k=0

τf (xk), (35)

holds for all x ∈ X, t > 0. Thus by (34) we have

1 ≤
1

t
Ef

xTN(t)+1 = µf (τf )
1

t
Ef

x [N(t) + 1] −
1

t
Ef

xw(xN(t)+1) +
1

t
w(x),

which by (32) implies

lim inf
t→∞

1

t
Ef

x [N(t) + 1] ≥
1

µf (τf )

On the other hand, by (35) we see that

1

t
Ef

xTN(t)+1 ≤ 1 +
1

t
Ef

xτf (xN(t)),

which combined with (34) yields

µf (τf )
1

t
Ef

x [N(t) + 1] −
1

t
Ef

xw(xN(t)+1) +
1

t
w(x) ≤ 1 +

1

t
Ef

xτ(xN(t)).

Hence,

lim sup
t→∞

1

t
Ef

x [N(t) + 1] ≤
1

µf (τf )
∀x ∈ X, t > 0,

which proves the desired result.�

Proof of Theorem 4.7. This is a direct consequence of (27), (32) and Lemma
5.3.�

The results in the next proposition can be proved as in [27]; alternative
approaches can be founded in several other papers which consider similar but
different conditions (see, for instance, [12], [21], [29]).

Proposition 5.4. Suppose Assumptions 4.1, 4.2 and 4.8 hold. If, additionally,
τ(x, a) > 0 for all (x, a) in K, then there exists a triplet formed by a constant

13



ρ∗, an stationary policy f∗ ∈ F, and a function h∗ ∈ BW (X) that solves the
ACOE, that is,

h∗(x) = min
a∈A(x)

[
Ĉ(x, a) − ρ∗τ(x, a) +

∫

X

h∗(y)Q(dy|x, a)

]

= Ĉf∗(x) − ρ∗τf∗(x) +

∫

X

h∗(y)Qf∗(dy|x),

for all x ∈ X. Hence, f∗ is ratio EAC-optimal and ρ∗ is the ratio EAC optimal

value, that is,

Φ(f∗, x) = inf
π∈Π

Φ(π, x) = ρ∗ ∀x ∈ X.

Now we finally proceed to prove Theorem 4.9.

Proof of Theorem 4.9. Let the triplet (f∗, h∗, ρ∗) be as in Proposition 5.4.
Fix an arbitrary policy π ∈ Π and an arbitrary state x ∈ X. Next define U0 := 0
and

Un :=

n−1∑

k=0

[Ĉ(xk, ak) − ρ∗τ(xk, ak)] + h∗(xn) − h∗(x0), n = 1, 2, ....

It is easy to show that {Un} is a submartingale with respect to the filtration
{Fn}; moreover, by (28), (29) and (30), it follows that

Eπ
x

∣∣UN(t)+1

∣∣ < ∞,

and
lim

n→∞
Eπ

x |Un| I[N(t)≥n] = 0.

Then, using again the Optional Stopping Theorem we have

Eπ
x




N(t)∑

k=0

[Ĉ(xk, ak) − ρ∗τ(xk , ak)] + h∗(xN(t)+1) − h∗(x0)



 ≥ Eπ
x U1 ≥ 0 (36)

which combined with (35) yields

1

t
Jt(π, x) +

1

t
Eπ

x h∗(xN(t)+1) −
1

t
h∗(x) ≥ ρ∗

1

t
Eπ

x TN(t)+1 ≥ ρ∗.

Thus by (32) we have
J(π, x) ≥ ρ∗. (37)

Now observe that if we take π = f∗ the process {Un} is martingale. So all
inequalities in (36) and (37) become equalities, proving thus the desire result.�

Acknowledgment. The authors thank to A. Jáskiewicz who kindly showed
them her unpublished paper.
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[13] A. Jaśkiewicz (2002), Zero-sum semi-Markov games, SIAM J. Control Op-
tim. 41, 723-739.
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