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1 Introduction

Among the main motivations to study a discounted optimality criterion in
stochastic control problems are 1) the mathematical convenience (the dis-
counted criterion is the best understood of all performance indices), and
2) its natural economic or financial interpretation (see, for instance, [35]).
In both cases, the discount factor is typically assumed to be fixed or cons-
tant on the course of the process, which simplifies the mathematical analysis.
However, from the point of view of applications, this assumption might be
too strong or unrealistic. Indeed, in economic and financial models (see e.g.,
[2, 9, 14, 21, 28, 32, 35]), the discount factor is typically a function of in-
terest rates, which in turn are random variables. In these cases, we have a
time-varying random discount factor that can be represented as a stochastic
process.

In this paper we consider a class of discrete-time stochastic control proces-
ses under a discounted optimality criterion with random discount rate. The
state and discount processes evolve according to the difference equations:

xt+1 = F (xt, αt, at, ξt), (1)

αt+1 = G(αt, ηt), (2)

for t = 0, 1, . . . , where F and G are known continuous functions, xt, αt, and
at are the state, the discount rate, and the control at time t, respectively.
Moreover, the state and discount disturbance process {ξt} and {ηt} are ob-
servable sequences of independent and identically distributed (i.i.d.) random
variables with unknown distributions θξ and θη, respectively.

The actions applied by the controller at the decision times are selected
according to rules known as control policies. The role of such policies is
to minimize a discounted performance index with possibly unbounded one-
stage cost and a random discount rate that varies as in (2). Clearly, this
performance index depends on the unknown distributions θξ and θη. Thus,
to construct ”minimizing” policies, the controller must combine control tasks
with suitable statistical estimation methods of the joint distribution θ of the
random variables ξ and η. The resulting policy of this procedure is called
adaptive.

Our approach consists in estimating θ by means of the empirical distri-
bution θt of the process {(ξt, ηt)} . This method is very general in the sense
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that θ can be arbitrary. However, since the discounted cost criterion depends
strongly on the decision selected at first stages (precisely when the informa-
tion about θ is deficient) we can not ensure, in general, the existence of an
optimal adaptive policy. Thus, the discounted optimality will be analyzed in
an asymptotic sense (see [33, 16]).

The discounted cost criterion in stochastic control problems has been wi-
dely studied under different approaches: dynamic programming (see, e.g.,
[16, 18, 19, 20, 24, 27, 29]); convex analysis (see, e.g., [5, 6, 7, 26]); linear
programming (see, e.g., [15]); Lagrange multipliers (see, e.g., [25]); adaptive
procedures (see, e.g., [3, 12, 16, 17, 22, 23]); see also [5, 6, 7, 34] for other
variants. In these references, a fixed (non-random) discount factor is assu-
med. Recently, in [13], the discount criterion with a random discount factor
was studied under the assumption that the components of the corresponding
control model are known by the controller. In contrast, the main feature of
this paper is that the distribution of the state and the discount disturbances
are unknown.

The paper is organized as follows. In Section 2 we introduce the Markov
control model we are concerned with. Next, in Section 3, we present the
discounted optimality criterion with random discount rates. Section 4 con-
tains the basic assumptions and some preliminary results on the discounted
criterion and the estimation process. The construction of adaptive control
policies together with our main results are introduced in Section 5 and pro-
ved in Section 6. Finally, in Section 7 we present a consumption-investment
example to illustrate our assumptions and results.

Notation. Given a Borel space X (that is, a Borel subset of a complete
and separable metric space) its Borel sigma-algebra is denoted by B(X), and
“measurable”, for either sets or functions, means “Borel measurable”. Given
a Borel space X, we denote by IP (X) the family of probability measures on
X, endowed with the weak topology. Let X and Y be Borel spaces. Then a
stochastic kernel γ(dx | y) on X given Y is a function such that γ(· | y) is a
probability measure on X for each fixed y ∈ Y, and γ(B | ·) is a measurable
function on Y for each fixed B ∈ B(X).
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2 Markov control model

The Markov control processes associated to the system (1)-(2) is specified by
the elements

M := (X, Γ, A, S1, S2, P1, P2, c) (3)

satisfying the following conditions. The state space X, the action space A,
and the state and discount disturbance spaces S1 and S2, respectively, are
Borel spaces. The set Γ := [α∗,∞), α∗ > 0, is the discount rate space. For
each pair (x, α) ∈ X × Γ, A(x, α) is a nonempty Borel subset of A denoting
the set of admissible controls when the system is in state x and a discount
rate α is imposed. The set

IK = {(x, α, a) : x ∈ X,α ∈ Γ, a ∈ A(x, α)} (4)

of admissible state-discount-action triplets is assumed to be a Borel subset
of the Cartesian product of X, Γ, and A. In addition, the transition law P1,
corresponding to (1), is a stochastic kernel on X given IK, that is, for all
t ≥ 0, (x, α, a) ∈ IK and B ∈ B(X),

P1(B|x, α, a) : = Prob [F (xt, αt, at, ξt) ∈ B|xt = x, αt = α, at = a]

=

∫

S1

1B (F (x, α, a, s)) θξ(ds), (5)

where F : X × Γ × A × S1 → X, the function in (1), is continuous, 1B (·)
denotes the indicator function of the set B, and {ξt} is a sequence of i.i.d.
random variables in S1 and common unknown distribution θξ ∈ IP (S1). Simi-
larly, for all t ≥ 0, α ∈ Γ and D ∈ B(Γ), the transition law P2, corresponding
to (2), is defined as:

P2(D|α) : = Prob [G(αt, ηt) ∈ D|αt = α]

=

∫

S2

1D (G(α, s)) θη(ds), (6)

where G : Γ × S2 → Γ, the function in (2), is continuous, and {ηt} is a
sequence of i.i.d. random variables in S2 (independent of the process {ξt})
with unknown distribution θη ∈ IP (S2). Finally, the cost-per-stage c(x, α, a)
is a measurable real-valued function on IK, possibly unbounded.

The control model M has the following interpretation. At stage t, the
system is in the state xt = x ∈ X and the discount factor αt = α ∈ Γ
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is imposed. Then, the controller gets estimates θξ
t and θη

t of the unknown
distributions θξ and θη, respectively, and combines these estimates with the
history of the system to select a control a = at(θ

ξ
t , θ

η
t ) ∈ A(x, α). As a

consequence of this the following happens: 1) a cost c(x, α, a) is incurred,
and 2) the system moves to a new state xt+1 = x′ and a new discount factor
αt+1 = α′ is imposed according to the transition laws (5) and (6). Once the
transition to state x′ occurs, the process is repeated.

Control policies. We define the space of admissible histories up to time t
by IH0 := X ×Γ and IHt := (IK×S1×S2)

t×X ×Γ, t ≥ 1. A generic element
of IHt is written as ht = (x0, α0, a0, ξ0, η0, ..., xt−1, αt−1, at−1, ξt−1, ηt−1, xt, αt).
A (randomized, history-dependent) control policy is a sequence π = {πt}
of stochastic kernels πt on A given IHt such that πt(A(xt, αt) | ht) = 1,
for all ht ∈ IHt, t ≥ 0. We denote by Π the set of all control policies
and by IF⊂ Π the set of all (deterministic) stationary policies. As usual,
every stationary policy π ∈IF is identified with some measurable function
f : X × Γ → A such that f(x, α) ∈ A(x, α) for every (x, α) ∈ X × Γ, taking
the form π = {f, f, f, ...} =: f . In this case we use the notation

c(x, α, f) := c(x, α, f(x, α)) and F (x, α, f, s) := F (x, α, f(x, α), s)

for all x ∈ X, α ∈ Γ and s ∈ S.

3 Discounted criterion

We assume that the costs are exponentially discounted with accumulative
random discounted rates. That is, a cost C incurred at stage t is equivalent
to a cost C exp(−St) at time 0, where St =

∑t−1
i=0 αi if t ≥ 1, S0 = 0. In

this sense, when using a policy π ∈ Π, given the initial state x0 = x and the
initial discount factor α0 = α, we define the total expected discounted cost
(with random discount rates) as

V (π, x, α) := Eπ
(x,α)

[ ∞∑
t=0

exp(−St)c(xt, αt, at)

]
, (7)

where Eπ
(x,α) denotes the expectation operator with respect to the probability

measure P π
(x,α) induced by the policy π, given x0 = x and α0 = α. (see, e.g.,

[4] for the construction of P π
(x,α))
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The optimal control problem associated to the control model M, is then
to find an optimal policy π∗ ∈ Π such that V (π∗, x, α) = V ∗(x, α) for all
( x, α) ∈ X × Γ, where

V ∗(x, α) := inf
π∈Π

V (π, x, α) (8)

is the optimal value function.

Remark 3.1 From (2), observe that {exp(−St)} is a sequence of random
variables (not necessarily independent) representing the rate of discount at
each stage t. Moreover, if αt = α for all t ≥ 0 and some α ∈ (0,∞), the
performance index (7) reduces to the usual β−discounted cost criterion with
β = exp(−α).

In the context of our work (unknown distributions θξ and θη) we must
combine suitable statistical estimation methods of θξ and θη with control pro-
cedures in order to construct optimal policies. However, as the performance
index (7) depends heavily on the controls selected at the first stages (precisely
when the information about the distributions θξ and θη is deficient), we can
not ensure, in general, the existence of such policies. Thus, the optimality of
policies constructed in this paper will be studied in the following asymptotic
sense.

Definition 3.2 A policy π ∈ Π is said to be asymptotically discounted opti-
mal for the control model M if∣∣V (n)(π, x, α)− Eπ

(x,α) [V ∗(xn, αn)]
∣∣ → 0 as n →∞, for all (x, α) ∈ X × Γ,

where

V (n)(π, x, α) := Eπ
(x,α)

[ ∞∑
t=n

exp(−Sn,t)c(xt, αt, at)

]
(9)

is the total expected discounted cost from stage n onward, and

Sn,t =
t−1∑

k=n

αk for t > n, Sn,n = 0. (10)

Clearly, discounted optimality implies asymptotic discounted optimality.
The notion of asymptotic optimality was introduced by Schall [33] to study
a problem of estimation and control in dynamic programming (see also [12,
16, 22]).
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4 Assumptions and preliminary results

Observe that we can write the system (1)-(2) as

yt+1 = H(yt, at, χt), t = 0, 1, . . . ,

where, letting Y := X × Γ, S := S1 × S2, yT
t := (xt, αt), and χt := (ξt, ηt),

H : Y × A× S → Y is a continuous function defined as

H(yt, at, χt) := (F (xt, αt, at, ξt), G(αt, ηt))
T ,

and {χt} is a sequence of i.i.d. S−valued random variables, defined on an
underlying probability space (Ω,F , P ), with unknown common distribution
θ(·) = θξ(·)θη(·). Thus

θ(B) = P (χt ∈ B) , t ≥ 0, B ∈ B(S).

In the remainder, the probability space (Ω,F , P ) is fixed and a.s. means
almost surely with respect to P .

Now, for notational convenience, we put the control model M in the form

(Y,A, {A(y) ⊂ A|y ∈ Y } , Q, c) ,

where Q is the stochastic kernel on Y given IK= {(y, a) : y ∈ Y, a ∈ A(y)}
(see (4)) defined as

Q(B|y, a) : = Prob [yt+1 ∈ B|yt = y, at = a]

=

∫

S

1B (H(y, a, s)) θ(ds)

= θ ({s ∈ S : H(y, a, s) ∈ B}) , B ∈ B(Y ).

We shall require two sets of assumptions. In the first one, Assumption
4.1, we impose continuity and compactness conditions to ensure the existence
of minimizers and a solution to the optimality equation, while Assumption
4.2 are technical requirements to get a suitable estimation process of the
distribution θ (see Remark 4.4(c) below). Note that Assumption 4.1(a) allows
a unbounded one-stage cost function c(y, a) provided that it is majorized by
a ”bounding” function W.
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Assumption 4.1 a) For each y ∈ Y, the set A(y) is compact.
b) For all y ∈ Y the function a → c(y, a) is lower semi-continuous (l.s.c.)
on A(y). Moreover, there exists a continuous function W : Y → [1,∞) and
a constant M such that

sup
a∈A(y)

c(y, a) ≤ MW (y), y ∈ Y.

c) The function

v(y, a) :=

∫

S

v(H(y, a, s))θ(ds)

is continuous and bounded on IK for every measurable bounded function v on
Y.
d) There exist constants p > 1 and β0 < ∞ satisfying 1 ≤ β0 < exp(α∗) such
that for all y ∈ Y and a ∈ A(y),

W p (H(y, a, χ0)) ≤ β0W
p(y) a.s. (11)

In addition, Assumption c) holds when v is replaced with W.

An equivalent condition to relation (11) is that for all y ∈ Y and a ∈ A(y)

W (H(y, a, χ0)) ≤ β′0W (y) a.s.,

for some 1 ≤ β′0 < exp(α∗). However, for convenience we use Assumption4.1(d).

Assumption 4.2 a) The family of functions

VW :=

{
V ∗ (H(y, a, .))

W (y)
: (y, a) ∈ IK

}

is equicontinuous on S, where V ∗ is the optimal value function (see(8)).
b) The function

ϕ(s) := sup
(y,a)

[W (y)]−1 W (H(y, a, s))

is continuous on S.
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Remark 4.3 Clearly Assumption 4.2(a) holds if S is a countable set. In
addition, the function ϕ in Assumption 4.2 might be non continuous. In such
case we replace Assumption 4.2(b) by supposing the existence of a continuous
majorant ϕ̄ of ϕ such that E [ϕ̄(χ0)]

p < ∞ (see 4.4(c) below).

To estimate θ we use the empirical distribution {θt} ⊂ IP (S) of the dis-
turbance process {χt}, defined as follows. Let ν ∈ IP (S) be a given arbitrary
probability measure. Then

θ0 := ν,

θt(B) :=
1

t

t−1∑
i=0

1B(χi), for all t ≥ 1 and B ∈ B(S).

Remark 4.4 a) Observe that the inequality (11) implies, for all (y, a) ∈IK,

∫

S

W p (H(y, a, s)) θt(ds) =
1

t

t−1∑
i=0

W p (H(y, a, χi)) ≤ β0W
p(y) a.s., (12)

which in turn yields [see Lemma 6.1 below]
∫

S

W p (H(y, a, s)) θ(ds) ≤ β0W
p(y).

b) It is well-known (See, e.g., [8]) the fact that θt converges weakly to θ a.s.,
that is, ∫

udθt →
∫

udθ a.s. as t →∞,

for every real-valued, continuous and bounded function u on S.
c) Furthermore, from Assumption 4.1(d)

E [ϕ(χ0)]
p < ∞.

Thus, from Assumption 4.2, using the fact that V ∗(y) ≤ CW (y) (see Propo-
sition 4.5 below), and applying Theorem 6.4 in [30], we get

Dt → 0 a.s., as t →∞, (13)

where

Dt := sup
(y,a)∈IK

∣∣∣∣
∫

S

V ∗(H(y, a, s))

W (y)
θt(ds)−

∫

S

V ∗(H(y, a, s))

W (y)
θ(ds)

∣∣∣∣ . (14)
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We denote by IBW the normed linear space of all measurable functions
u : Y → < with a finite norm ‖u‖W defined as

‖u‖W := sup
y∈Y

|u(y)|
W (y)

. (15)

A first consequence of Assumption 4.1, which is stated in [13], is the
following proposition.

Proposition 4.5 Suppose that Assumption 4.1 holds. Then V ∗ ∈IBW , that
is, there exists a constant C > 0 such that

V ∗(y) ≤ CW (y) for all y ∈ Y. (16)

In addition, V ∗ satisfies the optimality equation

V ∗(y) = inf
a∈A(y)

(
c(y, a) + exp(−α)

∫

S

V ∗(H(y, a, s))θ(ds)

)
, ∀y ∈ Y. (17)

5 Main results

Let {Vt} be a sequence of functions in IBW defined as V0 ≡ 0, and for t ≥ 1,

Vt(y) = inf
a∈A(y)

(
c(y, a) + exp(−α)

∫

S

Vt−1(H(y, a, s))θt(ds)

)
, y ∈ Y. (18)

A straightforward calculation shows that for some constant C ′,

Vt(y) ≤ C ′W (y) a.s, y ∈ Y, t ≥ 0. (19)

Now, applying standard arguments on the existence of minimizers (see,
e.g., [31]), under Assumption 4.1 and the continuity of H, for each t > 0 and
δt > 0, there exists ft ∈IF such that

c(y, ft) + exp(−α)

∫

S

Vt−1(H(y, ft, s))θt(ds) ≤ Vt(y) + δt a.s. y ∈ Y. (20)

Definition 5.1 Let {δt} be an arbitrary sequence of positive numbers such
that δt → 0 as t →∞, and let {ft} be a sequence of functions in IF satisfying
(20). We define the policy π̂ = {π̂t} as

π̂t(ht) = π̂t(ht; θt) := ft(yt), t > 0,

and π̂0(y) is any fixed action in A(y).
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We can state our main results as follows:

Theorem 5.2 Under Assumptions 4.1 and 4.2, we have
a) ‖Vt − V ∗‖W → 0 a.s., as t →∞;
b) The policy π̂ is asymptotically discount optimal.

6 Proofs

The proof of Theorem 5.2 is based on the following results.

Lemma 6.1 Suppose that Assumption 4.1 holds. Then:
a) For all y ∈ Y and a ∈ A(y),

∫

S

W p (H(y, a, s)) θ(ds) ≤ β0W
p(y). (21)

b) For all y ∈ Y, a ∈ A(y), and t > 0,

∫

S

W (H(y, a, s)) θt(ds) ≤ βW (y) a.s. (22)

and ∫

S

W (H(y, a, s)) θ(ds) ≤ βW (y), (23)

where β := β
1/p
0 .

c) For all y ∈ Y and π ∈ Π, we have

sup
t>0

Eπ
y [W p(yt)] < ∞ and sup

t>0
Eπ

y [W (yt)] < ∞.

Proof: It is clear that the part (a) follows from Assumption4.1(d). Next,
the part (b) follows from the relations (12) and (21), and applying Jensen’s
inequality, while part (c) is a consequence of (21) and (23) (see details in
[10, 11, 12, 19, 22]).¥

We also need the following characterization of asymptotic optimality (see
Definition 3.2) which is an adaptation of Theorem 4.6.2 in [18] (see also [33])
to our context (randomized discounted cost criterion).
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Lemma 6.2 A policy π ∈ Π is asymptotically discount optimal for the con-
trol model M if, for all y ∈ Y ,

Eπ
y [Φ(yt, at)] → 0 as t →∞,

where

Φ(y, a) := c(y, a) + exp(−α)

∫

S

V ∗ (H(y, a, s)) θ(ds)− V ∗(y), (y, a) ∈ IK.

(24)
(Note that, by (17), Φ is nonnegative.)

Proof: Observe that for each π ∈ Π, y ∈ Y, and t ≥ 0,

Φ(yt, at) = Eπ
y [c(yt, at) + exp(−αt)V

∗(yt+1)− V ∗(yt)|ht, at] ,

where ht represent the history of the system up to time t (see definition
of control policies). Hence, from definition (9) and (10), using the fact
exp(−Sn,t) exp(−αt) = exp(−Sn,t+1), and applying the properties of con-
ditional expectation, we have, for each n ≥ t, π ∈ Π, and y ∈ Y

∞∑
t=n

Eπ
y [exp(−Sn,t)Φ(yt, at)]

=
∞∑

t=n

Eπ
y

[
exp(−Sn,t)E

π
y [c(yt, at) + exp(−αt)V

∗(yt+1)− V ∗(yt)|ht, at]
]

=
∞∑

t=n

Eπ
y [exp(−Sn,t)c(yt, at)] +

∞∑
t=n

Eπ
y [exp(−Sn,t+1)V

∗(yt+1)− exp(−Sn,t)V
∗(yt)]

= V (n)(π, y)− Eπ
y [V ∗(yn)] + lim

m→∞
Eπ

y [exp(−Sn,m)V ∗(ym)] (25)

= V (n)(π, y)− Eπ
y [V ∗(yn)] ,

where the last equality follows from Holder’s inequality, Lemma 6.1(c), (16),
the fact α∗ ≤ αt, t ≥ 0, and the following relation

lim
m→∞

Eπ
y [exp(−Sn,m)V ∗(ym)] ≤ lim

m→∞
(
Eπ

y [exp(−p′Sn,m)]
)1/p′ (

Eπ
y [V ∗(ym)]p

)1/p

≤ lim
m→∞

C(Eπ
y [W (ym)]p)1/p(exp(−p′α∗(m− n)))1/p′

≤ CM lim
m→∞

(exp(−p′α∗(m− n)))1/p′

= 0.
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(See Lemma 6.1 (c) for constant M).
Finally, since the limit

lim
t→∞

Eπ
y [Φ(yt, at)] = 0

implies

lim
n→∞

∞∑
t=n

Eπ
y [exp(−Sn,t)Φ(yt, at)] = 0

then, the relation (25) yields the desired result.¥

We define the operators

Tu(y) := inf
a∈A(y)

{
c(y, a) + exp(−α)

∫

S

u (H(y, a, s)) θ(ds)

}
,

Ttu(y) := inf
a∈A(y)

{
c(y, a) + exp(−α)

∫

S

u (H(y, a, s)) θt(ds)

}
,

for all y ∈ Y and u ∈IBW . Observe that from Assumption 4.1 and Lemma
6.1, T and Tt map IBW to itself. In addition, following similar ideas of
Proposition 8.3.9 in [19], we have that T and Tt are contraction operators
with modulus γ := β0exp(−α∗) < 1 (see Assumption 4.1(d)), respect to the
norm ‖ · ‖W . That is, for all u, v ∈IBW ,

‖Tv − Tu‖W ≤ γ ‖v − u‖W

and
‖Ttv − Ttu‖W ≤ γ ‖v − u‖W a.s.

6.1 Proof of Theorem 5.2

a) From (16)-(19), V ∗, Vt ∈IBW , t > 0,

TV ∗ = V ∗ and TtVt−1 = Vt a.s. ∀t > 0. (26)

Hence

‖V ∗ − Vt‖W ≤ ‖TV ∗ − TtV
∗‖W + ‖TtV

∗ − TtVt−1‖W

≤ ‖TV ∗ − TtV
∗‖W + γ ‖V ∗ − Vt−1‖W a.s. (27)
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Now, from definition of T and Tt, and (14),

‖TV ∗ − TtV
∗‖W ≤ sup

(y,a)∈IK

∣∣∣∣
∫

S

V ∗ (H(y, a, s))

W (y)
θt(ds)−

∫

S

V ∗ (H(y, a, s))

W (y)
θ(ds)

∣∣∣∣
= Dt a.s. (28)

Combining (27) and (28), we have,

‖V ∗ − Vt‖W ≤ Dt + γ ‖V ∗ − Vt−1‖W a.s. (29)

Finally, denoting l := lim supt→∞ ‖V ∗ − Vt‖W < ∞ (see (16) and (19)) and
taking limsup on both sides of (29), from (13) we obtain l ≤ γl, which implies
(since 0 < γ < 1) that l = 0. This proves the part (a).

b) For each t > 0, we define the function Φt : IK→IR (see(24)) as

Φt(y, a) := c(y, a) + exp(−α)

∫

S

Vt−1 (H(y, a, s)) θt(ds)− Vt(y).

We also define, for each t > 0,

Ψt := sup
y∈Y

[W (y)]−1 sup
a∈A(y)

|Φ(y, a)− Φt(y, a)| . (30)

Observe that from definition of the policy π̂, we have (see (20)) Φt (., π̂t(.)) ≤
δt, for each t > 0. Hence,

Φ (yt, π̂t(ht)) ≤ |Φ (yt, π̂t(ht))− Φt (yt, π̂t(ht)) + δt|
≤ sup

a∈A(yt)

|Φ(yt, a)− Φt(yt, a)|+ δt

≤ W (yt)Ψt + δt a.s.

Therefore, according to Lemma 6.2, to prove asymptotic optimality of π̂, it
is sufficient to show that

Eπ̂
y (W (yt)Ψt) → 0 as t →∞. (31)

By adding and subtracting the term exp(−α)
∫

S
V ∗ (H(y, a, s)) θt(ds), we

have, for each (y, a) ∈IK and t > 0,

|Φt(y, a)− Φ(y, a)| ≤ |V ∗(y)− Vt(y)|
+ exp(−α)

∫

S

|Vt−1 (H(y, a, s))− V ∗ (H(y, a, s))| θt(ds)

+ exp(−α)

∣∣∣∣
∫

S

V ∗ (H(y, a, s)) θt(ds)−
∫

S

V ∗ (H(y, a, s)) θ(ds)

∣∣∣∣ ,
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which, from Lemma 6.1(a), (b), and definitions of the norm ‖·‖W and Dt

(see (14)), implies

|Φt(y, a, )− φ(y, a)|
W (y)

≤ ‖V ∗ − Vt‖W

+ β exp(−α)‖V ∗ − Vt−1‖W + Dt a.s. (32)

Thus, from Theorem 5.2(a) and (13),

Ψt → 0 a.s., as t →∞. (33)

Now observe that from (32), (13), (16), and (19), supt>0 Ψt ≤ M1 < ∞
for some constant M1. In addition, from (33) we have the convergence in
probability

Ψt

P π̂
y−→ 0 as t →∞, (34)

whereas from Lemma 6.1(c)

sup
t>0

Eπ̂
y (W (yt)Ψt)

p ≤ Mp
1 sup

t>0
Eπ̂

y (W p(yt)) < ∞.

This implies (see, for instance, Lemma 7.6.9 in [1]) that {W (yt)Ψt} is P π̂
y -

uniformly integrable.
On the other hand, for arbitrary positive numbers l1 and l2, we have, for

t > 0,

P π̂
y (W (yt)Ψt > l1) ≤ P π̂

y

(
Ψt >

l1
l2

)
+ P π̂

y (W (yt) > l2) ,

which, applying Chebyshev’s inequality, yields

P π̂
y (W (yt)Ψt > l1) ≤ P π̂

y

(
Ψt >

l1
l2

)
+

Eπ̂
y (W (yt))

l2
. (35)

Now, (35) together with Lemma 4.4(c) and (34), implies the convergence in
probability

W (yt)Ψt

P π̂
y−→ 0 as t →∞. (36)

Finally, (31) holds from (36) and the fact that {W (yt)Ψt} is P π̂
y -uniformly

integrable.¥
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7 Example

We consider an infinite horizon consumption-investment problem where an
investor musts allocate his/her current wealth xt between investment (at) and
consumption (xt − at), in each stage t = 0, 1, 2, ... In addition, in each stage
t, a discount factor exp(−αt) is imposed, which depends upon the current
bank interest rate.

The state and action spaces are X = A = [0,∞), and assuming that
borrowing is not allowed, the investment constraint set (i.e., the set of ad-
missible controls) takes the form A(x, α) = [0, x]. Moreover, we suppose that
the bank receives at least an interest rate of exp(α∗) − 1, for some α∗ > 0.
In this sense, the discount rate space is Γ = [α∗,∞).

The state process {xt} and the discount process {αt} evolve according to
the coupled difference equations

xt+1 = atρ(ξt), αt+1 = hαt + ηt, t = 0, 1, 2, ...,

(x0, α0) given, where h > 0, {ξt} and {ηt} are independent sequences of i.i.d.
random variables, and independent of (x0, α0), having a discrete distribution
with values in S1 and S2, respectively. In addition, ρ : S1 → (0, γ] is a given
measurable function with 1 ≤ γ < exp(α∗).

The one-stage cost c(x, α, a) is an arbitrary nonnegative measurable fun-
ction, which is l.s.c. in a, and satisfying

sup
a∈A(x,α)

c(x, α, a) ≤ M
(
b̄x + 1

)1/p
, (x, α) ∈ X × Γ, (37)

for some b̄ > 0, M > 0, and p > 1.

Clearly, the Assumptions 4.1(a), (b) and 4.2 are satisfied, by taking

W (y) = W (x, α) =
(
b̄x + 1

)1/p
and from Remark 4.3. We get Assumption

4.1(d) from the following relations: for all y = (x, α) ∈ Y = X × Γ, and
a ∈ A(y) = [0, x],

W p[H(y, a, χ0)] = b̄aρ(ξ0) + 1

≤ b̄xγ + 1 ≤ b̄xγ + γ

= γ(b̄x + 1)

= β0W
p(y),
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where β0 := γ.

Finally, Assumption 4.1(c) follows from Example C.6, Appendix C in [18].

Remark 7.1 Usually, in a consumption-investment problem where the ob-
jective is to maximize a randomized discounted reward criterion, a utility
function r is considered as the one-stage return. In particular, if we take

r(x, α, a) = b
√

x− a, (x, α) ∈ Y = X × Γ, a ∈ A(x, α),

the relation (37) is satisfied with the function r instead of c.
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