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Abstract

We are concerned with the expected average cost optimal control problem for discrete-time

Markov control processes with Borel spaces and possibly unbounded costs. We show, under a

Lyapunov stability condition and a growth condition on the costs, the existence of an stationary

optimal policy using a well-known fixed point theorem.
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1 Introduction

The expected average cost (EAC) optimal control problem is among the most studied optimality

criteria for discrete-time Markov control processes (MCPs) and there are several approaches to

analyze it, for instance, value and policy iteration algorithms, the vanishing discount factor approach,
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linear programming, the convex approach, etc. (see, for instance, [1], [2], [6], [7],[8], [20], and their

extensive bibliographies).

In recent years, some variants of Lyapunov-like stability conditions have been used in several

papers to handle the EAC optimal control problem with unbounded costs for MCPs on Borel spaces

([4], [5], [12], [13]) and, more recently, for semi-Markov control processes ([14], [16], [21]), as well

as for zero-sum Markov games ([10], [15], [19]). A key property used in all of these papers, is that

the imposed stability conditions yield the so-called weighted geometric ergodicity for the Markov

chains induced by stationary policies. (The weighted geometric ergodicity is a generalization of the

standard uniform geometric ergodicity in Markov chain theory; see, [8, Ch. 7] and [17, Ch. 16]

for a detailed discussion of these concepts). This fact makes the main difference with our approach

since we use “fixed point arguments” and do not need to use, at least explicitly, the W -geometric

ergodicity. Fixed point arguments have been used in several previous paper (see, for instance, [6,

Lemma 3.5 and Comments 3.7, pp. 59 and 61], [11], [3]), but under a stronger form of Doeblin

condition.

In the present paper, we show the existence of an optimal stationary policy for the EAC control

problem with unbounded costs for MCPs on Borel spaces using a new variant of the Lyapunov

condition (Assumption 3.2), and a growth condition on the costs (Assumption 3.1), besides the

standard continuity/compactness requirements (Assumption 3.4). To do this, we first show that some

operator, which is closely related to the average cost optimality equation (ACOE), is a contraction

(Theorem 3.5); then, we prove, using very simple arguments, that its fixed point solves the (ACOE)

which, in turn, yields the existence of EAC stationary optimal policies (Theorem 3.6).

2 Average cost optimality equation

We consider a standard discrete-time Markov control model (X,A, {A(x) : x ∈ X}, Q, C) where the

state space X and the control or action space A are both Borel spaces; for each x ∈ X, A(x) is a

Borel subset of A and it denotes the set of admissible controls or actions for the state x. We assume
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that the set K:={(x, a) : x ∈ X, a ∈ A(x)} is a Borel subset of X×A. The transition law Q(·|·) is a

stochastic kernel on X given K, and the one-step cost C is a measurable function on K. We denote

by F the class of all Borel measurable functions f : X → A satisfying the constraint f(x) ∈ A(x) for

each x ∈ X.

A control policy π = {πt} is a sequence of rules to chose admissible controls, that is, πt(A(xt)|ht) =

1, for each t = 0, 1, 2, · · · and each history ht = (x0, a0, x1, · · · , xt−1, at−1, xt) with ak ∈ A(xk) for

k = 0, 1, · · · t− 1. The class of all control policies is denoted by Π. A control policy π = {πt} is said

to be a (deterministic) stationary policy if there exists f ∈ F such that πt is concentrated on f(xt)

for all history ht and t = 0, 1, 2, · · · . In this case, following an standard convention, we denote the

policy π by f and identify the class of stationary policies with F.

For notational ease, for a measurable function v on K and f ∈ F we write

vf (x) := v(x, f(x)) x ∈ X. (1)

In particular, for the cost function C and the transition law Q, we have

Cf (x) = C(x, f(x)) and Qf (·|x) = Q(·|x, f(x)) x ∈ X. (2)

As is well-known, for each policy π ∈ Π and “initial” state x ∈ X, there exists an stochastic

processes {(xt, at)} and a probability measure P π
x —which governs the evolution of the processes—

both defined on the sample space (Ω,F) where Ω := (X ×A)
∞

and F is the product σ-algebra. We

will refer to xt and at as the state and control variables at time t, and denote by Eπ
x the expectation

operator with respect to the probability measure P π
x .

When a stationary policy f ∈ F is used, the state process {xt} is a Markov chain with one-step

probability transition Qf (·|·). In this case, we denote by Qn(·|·), n = 0, 1, · · · , the n-step probability

transition. Thus, in particular, we have for any measurable function u on X that

Ef
xu(xn) =

∫

X

u(y)Qn
f (dy|x) ∀x ∈ X, n = 0, 1, · · · , (3)
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whenever these expression are well-defined.

The expected average cost (EAC) for a policy π ∈ Π, given the initial state x0 = x ∈ X, is defined

as

J(π, x) := lim sup
n→∞

1

n
Eπ

x

n−1∑

k=0

C(xt, at).

Thus, the problem we are interested in is to choose a control policy π∗ ∈ Π with minimum expected

average cost, that is,

J(π∗, x) ≤ J(π, x) ∀x ∈ X, π ∈ Π. (4)

If a such policy π∗ there exists, it is called expected average cost (EAC) optimal.

Practically all the approaches to solve the EAC optimal control problem are related to find

solutions of the average cost optimality equation: a triplet (ĥ, f̂ , ρ̂) where ĥ is measurable function

on X, f̂ ∈ F and a constant ρ̂, is said to be a solution of the average cost optimality equation (ACOE)

—or a canonical triplet— if for all x ∈ X it holds that

ρ̂ + ĥ(x) = min
a∈A(x)

[
C(x, a) +

∫

X

ĥ(y)Q(dy|x, a)

]
= C �

f
(x) +

∫

X

ĥ(y)Q �

f
(dy|x). (5)

The connection between the EAC optimal control problem in (4) and the ACOE in (5) is well-known:

if (ĥ, f̂ , ρ̂) solves the ACOE and, in addition, it holds that

lim
n→∞

1

n
Eπ

x |ĥ(xn)| = 0 ∀π ∈ Π, x ∈ X, (6)

then—by standard dynamic programming arguments— the policy f̂ is EAC optimal and ρ̂ is the

EAC optimal cost; that is, ρ̂ = J(f̂ , x) ≤ J(π, x) for all π ∈ Π and x ∈ X.

We prove in Theorem 3.6, under Assumption 3.1 (growth condition on the costs), Assumption

3.2 (Lyapunov stability condition) and Assumption 3.4 (compactness/continuity requirements), the

existence of an EAC optimal stationary policy by showing the existence of a solution of the ACOE

satisfying (6).
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3 Main results and assumptions

Our first hypothesis imposes a growth condition on the cost function C.

Assumption 3.1. There exists a measurable function W (·) on X bounded below by a constant

θ > 0 and such that |C(x, a)| ≤ KW (x) for all x ∈ X, where K is a positive constant.

To state our second set of hypothesis, we introduce some notation. For a measurable function u(·)

on X, we define the weighted norm (W–norm, for short) as ||u||W := supx∈X

|u(x)|
W (x) , and denote by

BW (X) the Banach space of all measurable function with finite W –norm. Moreover, for a measure

γ(·) on X let γ(u) :=
∫
X

u(x)γ(dx) whenever the integral is well-defined.

Assumption 3.2. There exists a non-trivial measure ν(·) on X, a nonnegative measurable function

φ(·, ·) on K and a positive constant λ < 1 such that:

(a) ν(W ) < ∞;

(b) Q(B|x, a) ≥ ν(B)φ(x, a) ∀B ∈ B(X), (x, a) ∈ K;

(c)

∫

X

W (y)Q(dy|x, a) ≤ λW (x) + φ(x, a)ν(W );

(d) ν(φf ) > 0 ∀f ∈ F.

Assumption 3.2 was previously used for Markov and semi-Markov control processes on Borel

spaces with unbounded costs in [4], [5] and [16], respectively, but they also impose some additional

conditions. Specifically, they also require that the following holds:

Condition I: inff∈F ν(φf ) > 0;

Condition II: The whole family of transition laws Qf (·|·), f ∈ F, admits a common irreducibility

measure γ(·).

The key consequences of Assumptions 3.1, 3.2 and Conditions I –II can be stated [using the

relation (3)] as follows ([4], [16]):

(A) For each f ∈ F, the transition law Qf (·|·) is positive Harris recurrent. Thus, it admits a unique

invariant probability measure µf (·), that is, µf (·) =
∫
X

Qf (·|x)µf (dx).

(B) There exist positive constants M and β < 1 such that
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sup
f∈F

||Qn
f u − µf (u)||W ≤ ||u||W Mβn ∀u ∈ BW (X), n = 0, 1, · · · . (7)

(C) Thus, for each f ∈ F, the function

hf (x) :=

∞∑

n=0

[
Qn

f Cf (x) − µf (Cf )
]

x ∈ X, (8)

belongs to BW (X) and it satisfies the Poisson equation

hf (x) = Cf (x) − µf (Cf ) +

∫

X

hf (y)Qf (dy|x) ∀x ∈ X. (9)

The approach used in the present paper is quite different since we use “fixed-point arguments”,

instead of the W-geometric ergodicity in (7), to obtain solutions to the Poisson equations and,

moreover, we do not need to impose Conditions I-II. In fact, we show that Assumption 3.2 implies

that each transition probability Qf (·|·), f ∈ F, is ν–irreducible and also that it is positive Harris

recurrent. These facts are stated in the following theorem and proved in Section 4.

Theorem 3.3. Under Assumptions 3.1 and 3.2 the following holds. For each f ∈ F :

(a) Qf (·|·) is ν–irreducible and positive Harris recurrent with unique invariant probability measure

µf (·);

(b) µf (W ) < ∞ ; thus

ρf := µf (Cf ) < ∞ and ρ∗ := inf
f∈F

ρf < ∞; (10)

(c) There exists a unique function h0
f ∈ BW (X) that solves the Poisson equation (9) and which

satisfies ν(h0
f ) = 0.

Next, for each u ∈ BW (X), define

T̂ u(x) := inf
a∈A(x)

[
C(x, a) − ρ∗ +

∫

X

u(y)Q̂(dy|x, a)

]
∀x ∈ X,

where
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Q̂(B|x, a) := Q(B|x, a) − ν(B)φ(x, a) ∀B ∈ B(X), (x, a) ∈ K.

It is well-known that, in general, T̂u need not to be (Borel) measurable. To avoid this problem

it is necessary to impose some continuity/compactness conditions on the model. It is worth to

mentioning that the measurability problem can be solved in different settings (see, for instance, [7,

Theorem 3.5, p.28]). Here, for simplicity, we use the following one:

Assumption 3.4. For each x ∈ X :

(a) A(x) is a compact subset of A;

(b) C(x, ·) is lower semicontinuous on A(x);

(c) Q(·|x, ·) is strongly continuous on A(x), that is, the mapping a →
∫
X

u(y)Q(dy|x, a) is continuous

for each bounded measurable function u on X;

(d) the mapping a →
∫
X

W (y)Q(dy|x, a) is continuous;

(e) φ(x, ·) is continuous on A(x).

Notice that, under Assumption 3.2, Q̂(·|·, ·) is a nonnegative kernel on X given K, and also that

Assumption 3.2(c) can be rewritten equivalently as

∫

X

W (y)Q̂(dy|x, a) ≤ λW (x) ∀(x, a) ∈ K. (11)

Thus Assumption 3.2 essentially states that Q̂(·|·) satisfies a certain contraction property. We shall

prove that under Assumptions 3.1 and 3.4 the contraction property is transferred to the operator T̂.

Theorem 3.5. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Then:

(a) T̂ is a contraction operator from BW (X) into itself with modulus λ; hence, by Banach’s Fixed

Point Theorem, there exists a unique function h∗ ∈ BW (X) such that h∗ = T̂h∗;

(b) There exists a policy f∗ ∈ F such that

h∗(x) = Cf∗(x) − ρ∗ +

∫

X

h∗(y)Q̂f∗(dy|x) ∀x ∈ X, (12)

with ρ∗ as in (10).
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Now, we are ready to state our main result.

Theorem 3.6. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Then:

(a) The triplet (h∗, f∗, ρ∗) in Theorem 3.5 satisfies the ACOE (5) and

J(f∗, x) = ρ∗ ≤ J(π, x) ∀x ∈ X, π ∈ Π;

(b) The functions h0
f , f ∈ F, in Theorem 3.3(c) and h∗ satisfy

h∗(x) = inf
f∈F∗

h0
f (x) ∀x ∈ X,

where F
∗ := {f ∈ F : f is EAC-optimal}.

4 Proofs of Theorems 3.3, 3.5 and 3.6.

To prove Theorems 3.3, 3.5 and 3.6 we need some preliminary results, which are collected in Remark

4.1 and Lemmas 4.2, 4.3, and 4.4.

Remark 4.1. Iterations of the inequality in Assumption 3.2(c) yields

θ ≤ Eπ
x W (xn) ≤ λnW (x) +

ν(W )

(1 − λ)ν(X)
∀x ∈ X, π ∈ Π, n = 0, 1, · · · , (13)

where θ is the positive constant in Assumption 3.1. Hence

lim
n→∞

1

n
Eπ

x |u(xn)| = 0 ∀x ∈ X, π ∈ Π, u ∈ BW (X). (14)

Now, for each v ∈ BW (X) and f ∈ F, define

Lv
fu(x) := v(x) +

∫

X

u(y)Q̂f (dy|x) = v(x) +

∫

X

u(y)Qf (dy|x) − ν(u)φf (x) ∀x ∈ X.

Lemma 4.2. Suppose that Assumption 3.2 holds. Then, for each v ∈ BW (X) and f ∈ F, Lv
f

is a contraction operator on BW (X) into itself with modulus λ. Hence, by Banach’s Fixed Point

Theorem, there exists a unique function hv
f ∈ BW (X) such that
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hv
f (x) = v(x) +

∫

X

hv
f (y)Qf (dy|x) − ν(hv

f )φf (x) ∀x ∈ X. (15)

Proof. Let v ∈ BW (X) and f ∈ F be arbitrary but fixed. First note that for all u, w ∈ BW (X) we

have

|Lv
fu(x) − Lv

fw(x)| =

∣∣∣∣
∫

X

u(y)Q̂f (dy|x) −

∫

X

w(y)Q̂f (dy|x)

∣∣∣∣ ≤
∫

X

|u(y) − w(y)|Q̂f (dy|x) ∀x ∈ X.

Thus, by (11), we see that

|Lv
fu(x) − Lv

fw(x)| ≤ ||u − w||W

∫

X

W (y)Q̂f (dy|x) ≤ ||u − w||W λW (x) ∀x ∈ X;

hence

∥∥Lv
fu − Lv

fw
∥∥

W
≤ λ ∀u, w ∈ BW (X).�

Lemma 4.3. Suppose that Assumption 3.2 holds. Then, for each f ∈ F, there exists a constant

kf 6= 0 such that

lim
n→∞

1

n
Ef

x

n−1∑

k=0

φf (xn) = kf ∀x ∈ X.

Proof. Choose an arbitrary f ∈ F and take v ≡ 1 in Lemma 4.2. Then there exists a (unique)

function h1
f ∈ BW (X) such that

h1
f (x) = 1 +

∫

X

h1
f (y)Qf (dy|x) − ν(h1

f )φf (x) ∀ ∈ X.

Iteration of this equation yields

h1
f (x) = n − ν(h1

f )Ef
x

n−1∑

k=0

φf (xk) + Ef
xh1

f (xn) ∀x ∈ X, n = 0, 1, · · · .

Hence, by Remark 4.1, multiplying by 1/n and letting n → ∞ we have
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ν(h1
f ) lim

n→∞

1

n
Ef

x

n−1∑

k=0

φf (xk) = 1 ∀x ∈ X,

which proves the desire with kf = 1/ν(h1
f ).�

Proof of Theorem 3.3. Pick an arbitrary stationary policy f ∈ F.

(a) By Lemma 4.2, for each v ∈ BW (X) there exists a (unique) function hv
f ∈ BW (X) satisfying

hv
f (x) = v(x) +

∫

X

hv
f (y)Qf (dy|x) − ν(hv

f )φf (x) ∀x ∈ X.

Thus, by iteration again, we have

hv
f (x) = Ef

x

n−1∑

k=0

v(xn) − ν(hv
f )Ef

x

n−1∑

k=0

φf (xk) + Ef
xhv

f (xn) ∀x ∈ X, n = 1, 2, · · · .

Hence, from Remark 4.1 and Lemma 4.3, we obtain

lim
n→∞

1

n
Ef

x

n−1∑

k=0

v(xk) = ν(hv
f ) lim

n→∞

1

n
Ef

x

n−1∑

k=0

φf (xk) = ν(hv
f )kf < ∞ ∀x ∈ X.

Then by Theorem 3.2 in [9] the following hold:

(i) The transition probability Qf (·|·) is positive Harris recurrent; thus, in particular, it is irre-

ducible and it has a unique invariant probability measure µf (·);

(ii) moreover, for any bounded measurable function v on X,

lim
n→∞

1

n
Ef

x

n−1∑

k=0

v(xk) = µf (v) ∀x ∈ X, (16)

Finally, from [18, Remark 2.1, p.15], we have that the measure ν(·) is an irreducibility measure.

(b) Taking v ≡ W and proceeding as in the proof of part (a) , we get a function hW
f ∈ BW (X)

satisfying

lim
n→∞

1

n
Ef

x

n−1∑

k=0

W (xk) = ν(hW
f )kf < ∞ ∀x ∈ X. (17)

Now, consider a sequence {wn} of nonnegative bounded measurable functions converging increasingly

to W. Then observe that
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1

N
Ef

x

N−1∑

k=0

wn(xk) ≤
1

N
Ef

x

N−1∑

k=0

W (xk) ∀x ∈ X, N = 1, 2, · · · ,

which, by (16) and (17), implies µf (wn) ≤ ν(hW
f )kf < ∞ for all n = 1, 2, · · · . Thus, letting n → ∞,

we see that

µf (W ) ≤ ν(hW
f )kf < ∞.

Finally, (10) follows from Assumption 3.1, which yields that Cf is in BW (X).

(c) To prove this part, we introduce the following operator: for each u ∈ BW (X), define

T̂fu(x) := Cf (x) − ρf +

∫

X

u(y)Q̂f (dy|x) ∀x ∈ X,

where ρf is as in (10). Now, as in the proof of Lemma 4.2, it is easy to prove that T̂f is a contraction

operator from BW (X) into itself with modulus λ. Then, there exists a unique function h0
f ∈ BW (X)

such that

h0
f (x) = T̂fh0

f (x) = Cf (x) − ρf +

∫

X

h0
f (y)Qf (dy|x) − ν(h0

f )φf (x) ∀x ∈ X.

Therefore, integrating both sides with respect to the invariant probability measure µf (·), we obtain

ν(h0
f )µf (φf ) = 0. (18)

On the other hand, integrating both sides of the inequality

∫

X

W (y)Qf (dy|x) ≤ λW (x) + ν(W )φf (x) x ∈ X,

with respect to µf (·) we see that 0 < (1 − λ)θ ≤ (1 − λ)µf (W ) ≤ ν(W )µf (φf ) < ∞, which implies

µf (φf ) ≥
(1 − λ)θ

ν(W )
> 0, (19)
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where θ is the positive constant in Assumption 3.1; hence, by (18), ν(h0
f ) = 0. We thus get the

Poisson equation

h0
f (x) = Cf (x) − ρf +

∫

X

h0
f (y)Qf (dy|x) ∀x ∈ X.�

Before proving Theorem 3.5 we note the following.

Lemma 4.4. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Then for each u ∈ BW (X) there

exists f ∈ F such that

T̂u(x) = Cf (x) − ρ∗ +

∫

X

u(y)Q̂f (dy|x) ∀x ∈ X; (20)

hence T̂u is measurable and it belongs to BW (X).

The proof of Lemma 4.4 is omitted since it follows using standard arguments (see, for instance,

[4, Lemma 4.2], or [12, Proposition 2.6]).

Proof of Theorem 3.5. Let u be an arbitrary function in BW (X) and define

Lu(x, a) := C(x, a) − ρ∗ +

∫

X

u(y)Q̂(dy|x, a) ∀(x, a) ∈ K.

Note, by (11), that for any pair of functions u, w ∈ BW (X) we have

|Lu(x, a) − Lv(x, a)| ≤ ||u − v||W

∫

X

W (y)Q̂(dy|x, a) ≤ λ||u − v||W W (x),

for all (x, a) ∈ K. Thus

Lu(x, a) ≤ Lv(x, a) + λ||u − v||W W (x) ∀(x, a) ∈ K;

hence, taking the infimum on A(x) in both sides of this inequality, we see that

T̂u(x) ≤ T̂v(x) + λ||u − v||W W (x) ∀x ∈ X.

A similar result is obtained, of course, interchanging the role of the functions u and v, and so
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|T̂u(x) − T̂v(x)| ≤ λ||u − v||W W (x) ∀x ∈ X.

Therefore

||T̂u − T̂v||W ≤ λ||u − v||W .

This inequality and Lemma 4.4 show that T̂ is a contraction operator from BW (X) into itself

with modulus λ.

Part (b) is a direct consequence of Lemma 4.4 and part (a).�

Proof of Theorem 3.6. First note, by (19), that

inf
f∈F

µf (φf ) ≥
(1 − λ)θ

ν(W )
> 0. (21)

Now, let h∗ ∈ BW (X) and f∗ be as in Theorem 3.5(b). Then

h∗(x) = Cf∗(x) − ρ∗ +

∫

X

h∗(y)Qf∗(dy|x) − ν(h∗)φf∗(x) ∀x ∈ X.

Integrating both sides of the latter inequality with respect to the invariant probability measure

µf∗(·) we obtain ν(h∗)µf∗(φf∗) = ρf∗ − ρ∗ ≥ 0. Then, by (10) and (21), we see that ν(h∗) ≥ 0. On

the other hand, note that

h∗(x) ≤ Cf (x) − ρ∗ +

∫

X

h∗(y)Qf (dy|x) − ν(h∗)φf (x) ∀x ∈ X, f ∈ F;

integrating again but now with respect to µf (·), we get ν(h∗)µf (φf ) ≤ ρf − ρ∗ for all policy f ∈ F,

which implies that

ν(h∗) inf
f∈F

µf (φf ) ≤ 0.

Thus, by (21), ν(h∗) ≤ 0. It follows that ν(h∗) = 0, and so the triplet (h∗, f∗, ρ∗) satisfies the ACOE.

Finally, by (14), standard dynamic programming arguments yield
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J(f∗, x) = ρf∗ = ρ∗ ≤ J(π, x) ∀x ∈ X, π ∈ Π.

(b) First note that h∗ = h0
f∗ since h∗ is also a fixed point of the operator T̂f∗ Now, consider a policy

f ∈ F
∗ = {f ∈ F : f is EAC-optimal} and let h0

f be as in Theorem 3.3(c). Then

h0
f (x) = T̂fh0

f (x) ≥ T̂ h0
f (x) ∀x ∈ X.

This inequality implies that

h0
f (x) ≥ T̂ nh0

f (x) ∀x ∈ X, n = 1, 2, · · · .

Then, since T̂ nh0
f → h∗, we have h0

f ≥ h∗ = h0
f∗ . Therefore

h∗(x) = inf
f∈F∗

h0
f (x) ∀x ∈ X.�
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