
Applying Agents to Knowledge
Management in Software Maintenance

Organizations

Oscar M. Rodríguez1, Aurora Vizcaino 2, Ana I. Martínez1, Mario
Piattini2, Jesús Favela1

 1 CICESE, Computer Scicience Deparment, México
 {orodrigu|martinea|favela}@cicese.mx

2 Alarcos Research Group. University of Castilla-La Mancha,
Escuela Superior de Informática, España

Abstract. This work presents a multi-agent system
designed to manage the information and knowledge
generated during the software maintenance process.
The system has different types of agents, each
devoted to a particular type of information. Agents
use different reasoning techniques to generate new
knowledge from previous information and to learn
from their own experience. Thereby the agents
become experts in the type of knowledge they are
responsible for. Additionally, agents communicate
with each other to share information and knowledge.
Thus, there is reuse of knowledge and knowledge
management in the multi-agent architecture itself.
Keywords: Agents, Knowledge Management, Software
Maintenance.

1. INTRODUCTION

Knowledge is fast becoming the key to survival and
competitive advantage [13]. Many innovative
companies have long appreciated the value of
knowledge to enhance their products and customer
services. Therefore, a huge investment is being done
in the field of knowledge management, for example,
Berztiss in [5] claims that by the year 2004 the cost

of knowledge management is expected to reach USD
10,200,000,000.

The software industry, encouraged by the idea of
improving costs, schedules and quality of their
products is also betting on knowledge management
[12]. Some reasons of this interest in knowledge
management are that:

a) Software Engineering is a knowledge-
intensive work where the main capital is
what has been called the “intellectual
capital”. Unfortunately, the owners of this
intellectual capital are often the employees
instead of being the company as we might
expect. Employees, from their experience,
obtain tacit knowledge, which is richer and
more valuable than explicit knowledge, but
that cannot be easily expressed or
communicated [14]. Thereby, software
organizations depend greatly on
knowledgeable employees because they are
the key to a project’s success. When a
person with significant knowledge leaves an
organization, it creates severe knowledge
gaps but, what is worse, nobody in the
organization knows what knowledge they
have lost. “Knowing what employees know
is necessary for organizations to create a

Oscar Mario
Typewritten Text
In: Proc. of the Workshop on Agent-Mediated Knowledge Management(AMKM 2004) at ECAI 2004, Valencia, Spain, 22-27 August, p. 39-45

strategy for preventing valuable knowledge
from disappearing” [12].

b) Software development is a constantly
changing process. Many people work in
different phases, activities and projects.
Knowledge in software engineering is
diverse and its proportions immense and
steadily growing [17].

Both reasons are also applicable to a specific
process of the software life cycle: this is software
maintenance where the problems mentioned above
could be even more significant. Maintainers have to
face legacy software, written by people from other
units, which often has little or no documentation
describing the features of the software [25].

Thus, a well-known issue that complicates the
maintenance process is the scarce documentation that
exists related to a specific software system, or even if
detailed documentation was produced when the
original system was developed, it is seldom updated
as the system evolves.

Storing knowledge helps to reduce these problems
since it decreases dependency on employees’
knowledge because at least some of their expert
knowledge has been retained or made explicit.
Moreover, storing good solutions to problems or
lessons learned avoids repeating mistakes and
increases productivity and the likelihood of further
success [12].

This work describes how a multi agent knowledge
management system may be used during the software
maintenance process in order to improve
maintainers’ work and efficiency. The contents of
this paper are organized as follows: Section 2
outlines the tasks performed during the software
maintenance process and justifies why knowledge
management should be used in this process. Section
3 explains why agents are a suitable technique to
manage knowledge and describe a multiagent system
designed to encourage and facilitate the reuse of
previous experience in software maintenance
organizations. Finally, conclusions and future work
are presented in Section 4.

2. SOFTWARE MAINTENANCE

Many studies [18, 20] have demonstrated that most
of the overall expenses incurred during the life-cycle
of a software product occur during the maintenance
process. During this process different types of
maintenance could be required: corrective,
perceptive, adaptive or preventive. Each type of
maintenance has its own features but all of them

follow the same process, summarized in Figure 1; the
maintenance engineer receives the requirements that
the modification should fulfill. Then, s/he identifies
which parts of the system should be modified, which
modules could be affected by this modification and
plans what activities have to be performed. The
maintainer, unconsciously, takes advantage of his/her
experience to carry out all of these tasks. And, in the
case of his/her experience not being enough, the
maintainer would consult other resources that are
often two: a person who has already solved a similar
problem or has worked with that software previously
or s/he analyses the source code, which means to
dedicate a lot of time to this activity.

Maintainer

Requirements

Maintenance
Request

Document of
requirements

Identify system’s elements that will be
modified, and which ones could be

affected by the changes.

List of modules, db
tables, db reports,

etc. to be modified.

Changes
implementation

User
Other team
members

Documentation

Source
Code

Executable
program

System

Project

Maintainer

Requirements

Maintenance
Request

Document of
requirements

Identify system’s elements that will be
modified, and which ones could be

affected by the changes.

List of modules, db
tables, db reports,

etc. to be modified.

Changes
implementation

User
Other team
members

Documentation

Source
Code

Executable
program

System

Project

Figure 1. Summary of maintainers work

Frequently, information sources are often not
consulted because people ignore their existence or
location. Moreover, sometimes the organization itself
is not aware of the location of the pockets of
knowledge or expertise [16]. This is the number one
barrier to knowledge sharing [23]. We observed this
problem in two case studies carried out in two
software maintenance teams. The study showed that
on many occasions, organizations have documents or
people with the information or knowledge necessary
to support or help the maintainers to do their
activities, but either the latter did not know that other
documents or people could have provided useful
information to help them to complete the assignment
or the people with useful information did not know
what the latter was working on [21].

After analyzing the results of the case study, the
question of how to help the maintainers to identify
knowledge sources that could help them to carry out
their work, or to improve it by decreasing costs, time
or effort, arose.

3. A MULTI-AGENT SYSTEM TO
MANAGE KNOWLEDGE DURING
THE SOFTWARE MAINTENANCE
PROCESS

A knowledge management “program” in a company
often consists of three parts: a strategy, processes and
tools. Next we describe how we tackle these three
aspects in order to obtain a suitable knowledge
management approach.

The knowledge management strategy in
organizations can be defined based on their goals,
and how they proceed to achieve them. Software
development organizations are concerned with
controlling costs, meeting deadlines or/and
improving quality. To achieve this they look for
means to facilitate the work of their software
engineers [7]. In our case, we are interested in a
strategy based on making easier for maintenance
engineers to find knowledge and information that
could facilitate their work. Moreover, we think that
by reusing proven good solutions or lessons learned,
engineers will increase their expertise and their work
will have more quality with less costs and effort.

The second part consists of processes or company
activities to assist in knowledge management. This
will usually be methods for collecting and
distributing knowledge. We consider that the best
option to tackle this aspect is to have a separate
section of the organization in charge of these
processes such as an Experience Factory (a term
introduced by Basili et al in [2]). Otherwise, we
would have to face different problems such as how to
motivate maintenance engineers to capture their
knowledge into the system and manage it and, of
course, how to reward this work.

Finally, there are many tools to support
knowledge management and different classifications
of them [8]. A generic classification is to divide the
tools into “active” or “passive”. The first are those
that notify users when it is likely that they will
require some kind of knowledge without their
request. Passive tools require a user to actively seek
knowledge without any system support .

We consider active tools more appropriated for
the software maintenance domain since, as was
previously mentioned, maintainers seldom know all
the knowledge that the organization has, and for this
reason, they do not know what they can or should
search for. Therefore, the system should
automatically show information that can be useful
for a maintainer who is working on a specific project.

Based on the aspects just discussed and the
findings of the case studies carried out, we have
identified the following requirements for our system:

- The tool should be active.
- The tool should support access to different

sources of knowledge.
- The tool should support the search for

solutions to similar problems and lessons
learned.

- The tool should support the identification of
modules or files which could be affected by
the changes performed.

3.1. Why Agents?

To address the need for an active knowledge
management system able to generate and identify
appropriate knowledge and knowledge sources, we
have based our proposal on the use of agents. Agents
are proactive and autonomous. This means that they
can decide to act when they find it necessary to do
so. Thanks to these features agents can advise users
when and how should look for information in the
knowledge management system. Thus, agents solve
two problems about which users of this kind of
systems often complain: What information should be
introduced in the tool and how and when it should be
consulted [12].

Moreover, agents can manage both distributed and
local information. This is an important feature since
in most organizations in general and in software
maintenance in particular, information is generated
by different sources and often from different places.

The third reason is that agents can utilize different
reasoning techniques depending on the situation. For
instance, by using Case Based Reasoning (CBR) the
problem of finding similar information or related
problems is simplified. And with the use of
techniques such as induction, agents can learn which
modules or files are affected by a modification.

The fourth reason for using agents is that during
the maintenance process many types of knowledge
should be managed such as information about the
products to be maintained, about the staff working on
the different projects, about the projects and so on.
Agents with different roles can be in charge of each
type of information and they may also share
information and communicate with each other,
taking advantage of the expertise of each agent.

Furthermore, agents have already been
successfully used in other systems in charge of
knowledge management [15, 24]. Therefore, their
efficiency in these tasks has been proved.

3.2 Architecture of the System

In order to design a multi-agent system it is
advisable to use a methodology that supports the
development process. We have used MESSAGE
(Methodology for Engineering Systems of Software
agents) which combines several important features of
existing agent oriented software engineering
methodologies [6]. MESSAGE proposes different
level of analysis. At level 1 analysis focuses on the
system itself, identifying the types of agents and
roles, which are described in the next paragraphs.
The architecture has five main types of agents (see
Figure 2): staff, product, client, project and directory
agents.

The staff agent is a mediator between the
maintainer and the system. It acts like an assistant to
the maintenance engineer (ME). The rest of the
agents of the system communicate with the ME
through this agent. The staff agent monitors the ME
activities and requests the KMA to search for
knowledge sources that can help the ME to perform
his/her job. This agent has information that could be
used to identify the ME profile, such as which kinds
of knowledge or expertise s/he has or which kinds of
sources s/he often consults.

KSMA.- Knowledge Sources
Manager Agent
KMA.- Knowledge Manager
Agent

Server Client
Maintenance

engineer
KMA

Grafical u ser interface
KSMA Staff agent

Directory
agent
Main

container
Client agent
Client agents

container

Product
agent
Product agent container

Project
agent

KMA

Network

Personal agent
container

Grafical u ser
interface Global

repository

Local
repository

KSMA

Figure 2. Agent based architecture for a software
maintenance knowledge management tool.

The product agent manages information related to
a product, including its maintenance requests and the
main elements that integrate the product
(documentation, source code, databases, etc.). The
main role of this agent is to have updated
information about the modifications carried out in a
product and the people that were involved in it.

When the product agent receives a maintenance
request sent by a client, it creates a new project and
proposes the tasks that must be done in order to
fulfill the request. The agent also proposes the most
suitable people to perform those tasks and sends the
proposal to the staff agent in charge to assist the ME

that plays the role of project manager. The staff agent
informs the ME of these proposals, and s/he decides
if the proposal is accepted or modified. Once the
proposal has been accepted, the project agent starts
to work.

Each project is managed by a project agent, which
is in charge of informing the MEs involved in a
project about the tasks that they should perform. To
do this, the project agents communicate with the staff
agents. The project agents also control the evolution
of the projects.

The client agent manages information related to
the maintenance requests or problem reports
performed by a client. There is one agent of this kind
per client. Its main role is to assist them when they
send a maintenance request, directing it to the
corresponding product agent. Another important
activity of this agent is to inform the client about the
state of the maintenance requests sent previously by
him/her, by consulting the project agents in charge of
this request.

The directory agent manages information required
by agents to know how to communicate with other
agents that are active in the system. This agent
knows the type, name, and electronic address of all
active agents. Its main role is to control the different
agents that are active in the system at each moment.

Two auxiliary types of agents are considered in
the architecture, the Knowledge Manager Agent
(KMA) and the Knowledge Source Manager Agent
(KSMA).

The KMA is in charge of providing support in the
generation of knowledge and the search of
knowledge sources. This kind of agent is in charge of
managing the knowledge base. The staff KMA
generates new knowledge from the information
obtained from the MEs in their daily work. For
example, if a ME is modifying a program developed
in the Java language, the KMA can infer that the ME
has knowledge of this language and add his/her name
to the knowledge base as a possible source of
knowledge about Java. On the other hand, the
product KMA generates knowledge related to the
activities performed on the product. It could identify
patterns on the modifications done to the different
modules. For example, it could detect that there are
modules or documents that should be modified or
consulted when a specific module is modified, and in
this way, it could indicate which modules or
programs can be affected by the changes done on
others.

Finally, the KSMA has control over the
knowledge sources, such as electronic documents. It
knows the physical location of those sources, as well

as the mechanisms used to consult them. Its main
role is to control access to the sources. The
documents located in the workspace of the MEs , or
those that are part of a product, such as the
documentation of the system or the user
documentation, are accessed through this agent. The
KSMA is also in charge of the recovery of
documents located in places different from its
workspace. If those documents are managed by
another KSMA, the first KSMA should communicate
with the others to request the documents.

3.3 Agents Collaboration

As we mentioned before, agents must collaborate
with others in order to complete their jobs. In this
section we present an example of how this occurs.
The example shows how the staff agent and the
KMA communicate between them to support the ME
in the search of knowledge sources that can help
him/her. As Figure 3 shows, the staff agent captures
each event that is trigged by the ME on the graphical
user interface (GUI).

:StaffAgent:GUI :KMA :KBase:ME

Action performed
An eventhas been
trigered

[if the ME is working
on a task of the project]

Obtain information
topics aboutthe task

Request search of
knowledgesources that
know about thetopics

Search sourcesthat
know about the
topic

[For each topic]

Inform sources that
were found

Show message
about sources that
were found

Message about
sources that were
found

Figure 3. The staff agent and the KMA communicate
each other to help the ME search knowledge sources
relevant to the problem at hand

First, the ME sees a list of the projects s/he is

assigned. These are shown by the staff agent through
its GUI. When an ME selects one project, an event is
triggered and captured by the staff agent, which
obtains the information of the project, identifies
knowledge topics (system and module where the
problem appeared, kind of problem, etc.) and
generates some rules to request the KMA to search
for knowledge sources. To create the rules, the staff
agent tries to identify the knowledge that the
engineer would need to carry out the assignment.
Also the agent considers the types of sources the
engineer consults, assigning more relevance to the
sources that the engineer consults most frequently.
The KMA searches the knowledge base for

knowledge sources that can have information related
to the topics of the task to be performed. Once the
KMA finds the sources, it informs the staff agent
about them. Next, the staff agent notifies the ME of
the relevant sources that were found.

Finally, if the ME wants to see the sources found,
s/he chooses a button in the staff agent window, and
the agent will display a window with the list of
sources grouped by kind (see Figure 4). When the
maintainer selects one source from the list, the
window shows some information related to that
source, such as its location and the knowledge it has.

General data
about the source

Shows the diferent
locations of the source

Shows the kind of knowledge
that the source has

List of sources
found

General data
about the source

Shows the diferent
locations of the source

Shows the kind of knowledge
that the source has

List of sources
found

Figure 4. Window that shows the list of knowledge
sources found

3.4 Some Aspects of Implementation

The platform chosen to implement the multiagent
system is JADE [3] which is a FIPA compliant agent
platform, implemented in Java and developed as an
open source project. JADE has been used in the
development of other systems in the domain of
knowledge management [1, 4, 9, 11, 19].

On the other hand, as Figure 2 shows, the tool has
two types of repositories of information. One is
where local information related to specific tasks is
stored and the other is a global repository where
more generic knowledge is stored. The data are
classified following an ontology for software
maintenance proposed in [22], which is an extension
of that of [10].

4. CONCLUSIONS AND FUTURE
WORK

Knowledge is a crucial resource for organizations. It
allows companies to fulfil their mission and to
become more competitive. The management of
knowledge and how it can be applied to software
development and maintenance has received little
attention from the software engineering research
community so far. However, software companies
generate huge amount of knowledge that should be
stored and processed. In this way, companies would
obtain more benefit from it. This paper presents the
architecture of a multiagent system in charge of
storing and managing information, expertise and
lessons learned which are generated during the
software maintenance process. The multi agent
architecture facilitates the reuse of good solutions
and the sharing of lessons learned. Thereby, the costs
of maintenance in time and effort should decrease.

As future work we are planning to carry out a case
study in a real maintenance company in order to
evaluate the interaction between the staff agent and
the maintainers.

ACKNOWLEDGEMENTS

This work is partially supported by the MAS project
(grant number TIC2003-02737-C02-02), Ministerio
de Ciencia y Tecnología, SPAIN, and by CONACYT
under grant C01-40799 and the scholarship 164739
provided to the first author.

REFERENCES

1. Abecker, A.; Bernardi, A. and Elst., L. (2003). Agent
Technology for Distributed Organizational Memories:
The Frodo Project. Proceedings of the 5th
International Conference on Enterprise Information
Systems. Vol. 2, pp. 3-10.

2. Basili, V. R., Caldiera, G., and Rombach, H. D.
(1994). The Experience Factory. In Encyclopedia of
Software Engineering, Marciniak, J.J., and Wiley, J.,
(Eds.) pp. 469-476.

3. Bellifemine, A., Poggi, G., and Rimassa, G. (2001).
Developing multi agent systems with a FIPA-
compliant agent framework. Software Practise &
Experience 31: pp. 103-128.

4. Bergenti, F.; Poggi, A. and Rimassa, G. (2000). Agent
Architectures and Interaction Protocols for Corporate
Memory Management Systems. Proceedings of the

14th European Conference on Artificial Intelligence,
Workshop on Knowledge Management and
Organizational Memories. pp. 39-47.

5. Berztiss, A. T. (2002). Capability Maturity for
Knowledge Management. Proceedings of the 13th
International Workshop on Database and Expert
Systems Applications (DEXA’02), pp. 162-166.

6. Caire, G., Coulier, W., Garijo, F., Gómez, J., Pavón,
J., Leal, F., Chainho, P., Kearney, P., Stark, J., Evans,
R., Massonet, P. (2001). Agent Oriented Analysis
Using MESSAGE/UML in Agent Oriented Software
Engineering, pp. 119-135.

7. Dingsoyr, T., and Conradi, R. (2002). A Survey of
Case Studies of the Use of Knowledge Management
in Software Engineering. International Journal of
Software Engineering and Knowledge Engineering.
12 (4): pp. 391-414.

8. Dingsoyr, T., and Royrvik, E. (2003). An Empirical
Study of an Informal Knowledge Repository in a
Medium-Sized Software Consulting Company. In
Proceedings of the 25 th International Conference on
Software Engineering (ICSE’2003), pp. 84-92.

9. Gandon, F. (2002). A Multi-Agent Architecture For
Distributed Corporate Memories. Proceedings of the
Sixteenth European Meeting on Cybernetics and
Systems Research.

10. Kitchenham, B.A., Travassos, G.H., Mayrhauser, A.,
Niessink, F., Schneidewind, N.F., Singer, J., Takada,
S., Vehvilainen, R. and Yang, H. (1999). Towards an
Ontology of Software Maintenance. Journal of
Software Maintenance: Research and Practice. 11, pp.
365-389.

11. Knowledge On Demand (KOD), IST Project, IST-
1999-12503, http://kod.iti.gr/,
http://www.kodweb.org.

12. Lindvall, M., and Rus, I. (2003). Knowledge
Management for Software Organizations. In:
Managing Software Engineering Knowledge. Aurum,
A., R. Jeffery, C. Wohlin and M. Handzic (eds.).
Berlin. Springer. pp. 73-94.

13. Macintosh, A. (1997). Position paper on Knowledge
Asset Management
http://www.ntgi.net/ntgi/y2k/kmfr.html

14. Meeham, B., and Richardson, I. (2003). Identification
of Software Process Knowledge Management.
Software Process Improvement and Practice, pp. 45-
55.

15. Mercer, S., and Greenwood, S. (2001) A Multi-Agent
Architecture for Knowledge Sharing. Proceedings of
the Sixteenth European Meeting on Cybernetics and
Systems Research.

16. Nebus, J. (2001). Framing the Knowledge Search
Problem: Whom Do We Contact, and Why Do We
Contact Them?. Academy of Management Best
Papers Proceedings, pp. h1-h7.

17. Oliveira, K.M, Anquetil, N., Dias; M.G, Ramal, M.,
Meneses, R. (2003). Knowledge for Software
Maintenance. Fifteenth International Conference on
Software Engineering and Knowledge Engineering
(SEKE’03), San Francisco, 1-3 July, pp. 61-68.

18. Pigoski, T.M. (1997): Practical Software
Maintenance. Best Practices for Managing Your
Investment. Ed. John Wiley & Sons, USA.

19. Poggi, A.; Rimassa, G. and Turci, P. (2002). An
Intranet Based Muti-Agent System for Corporate
Memory Management. Proceedings of the Sixteenth
European Meeting on Cybernetics and Systems
Research.

20. Polo, M., Piattini, M., and Ruiz, F. (2002). Using a
Qualitative Research Method for Building A Software
Maintenance Methodology. In Software Practice &
Experience. John Wiley and Sons. 32 (13): pp. 1239-
1260.

21. Rodriguez, O. M., A. I. Martínez, et al. (2004).
Understanding and Supporting Knowledge Flows in
Community of Software Developers. X International
Workshop on Groupware, San Carlos (Costa Rica)
(accepted to publish) .

22. Ruiz, F., Vizcaíno, A., Piattini, M. and García, F.
(2004). An Ontology for the Management of Software
Maintenance Projects. To be published in the
International Journal of Software Engineering and
Knowledge Engineering.

23. Szulanski, G. (1994). Intra-Firm Transfer of Best
Practices Project. American Productivity and Quality
Centre, Houston, Texas, pp. 2-19.

24. Tacla, C., and Barthès, J-P. (2002). A Multi-Agent
Architecture for Knowledge Management System.
Second IEEE International Symposium on Advanced
Distributed Computing Systems. ISADS.

25. Vizcaino, A., Favela, J., Piattini, M., García, F.
(2003). Supporting Software Maintenance in Web
Repositories through a Multi-Agent System. In
Menasalvas, E., Segovia, J., and Szczepaniak , P. S.
(Eds.) First International Atlantic Web Intelligence
Conference (AWIC’2003). LNAI 2663, pp. 307-317.

