
Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79

Identifying Knowledge Management Needs in Software Maintenance Groups:
A qualitative approach

Oscar M. Rodríguez1, Ana I. Martínez1, Aurora Vizcaíno2, Jesús Favela1, Mario Piattini2
1CICESE, Computer Science Department, México.

{orodrigu | martinea | favela}@cicese.mx
2University of Castilla-La Mancha, Escuela Superior de Informática, España.

{Aurora.Vizcaíno | Mario.Piattini}@uclm.es

Abstract

Software maintenance is an activity that requires
lots of knowledge. For example, maintainers must
know what changes should do to the software, where to
do those changes and how those changes can affect
other modules of the system. Frequently they do not
have enough knowledge to make the best decision and
must consult other information sources, but these
sources are often unknown or difficult to locate.
Therefore, knowledge management could be useful to
address some of these problems; however, before
knowledge management tools could be developed for
software maintenance groups, some questions must be
answered: such as what kinds of problems could be
solved. In this paper a qualitative approach to the
identification of knowledge management needs in
software maintenance teams is presented. This
approach has been applied in two case studies, and an
agent-based knowledge management tool has been
designed and implemented from the results obtained.

1. Introduction

Software engineering is a knowledge intensive
activity [19]. Software developers must make many
decisions selecting one of several choices [22]; for
example, a maintainer must know what changes should
do to the software, where to do those changes and how
those changes can affect other modules of the system.
Maintainers mostly use their own experience to do
their task. However, in many occasions they do not
have all the knowledge or expertise needed to complete
their work and must consult other sources of
information, such as the system documentation, or
other collages [27]. This could be a difficult task
because those sources are often limited, inaccessible,
or unknown [24].

 Knowledge management provides methods and
techniques that help software organizations to make a
better use of their knowledge [22]. For example,
helping to identify who knows what, where the sources
of information are and what kind of knowledge could
be obtained from those sources. Even though
knowledge management could bring many benefits to
software organizations, little work has been done to
apply it in the software maintenance process [17, 22].

The need for knowledge management in software
maintenance has been observed by some authors. For
example, having access to people that were involved in
the development or maintenance of a system, capturing
the knowledge and experience of these people, or
increasing the flow of knowledge across the
maintenance teams [2, 24, 25, 27]. However, in order
to develop tools to support knowledge management in
the software maintenance process, some questions
must be answered first [1, 17], such as: what kinds of
problems could be solved?, what is the knowledge
involved in the activities performed by the
maintenance teams?, what are the sources they consult
to obtain that knowledge?, how the knowledge and
sources interact in the maintenance activities?. In
summary, how the knowledge flows through the
software maintenance process?.

Answering the above questions is not a trivial task
because the knowledge, experience, expertise, and the
sources of information may vary considerably between
organisations [24]. Thus, it is not sufficient to provide
tools to support knowledge management in software
maintenance groups, it is also important to provide
mechanisms to help identifying the specific knowledge
needed by them, the sources they consult to obtain that
knowledge, and how these knowledge and sources are
involved in the activities performed by the team.

In order to address the last goal, we have applied
qualitative techniques in two case studies performed in
two software maintenance groups. Particularly we have
defined a methodology based on a process modelling

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79
approach [7]. This paper presents the methodology we
have defined, and how it has been applied to identify
knowledge management needs in software
maintenance groups. The content of this paper is
organized as follows: In section 2, the related work to
our research is discussed. In section 3 the case studies
carried out and the methodology are described. Then
section 4 shows how the results of the study were used
to obtain design requirements for an agent-based
knowledge management system. Finally, conclusions
of this work are presented in section 5.

2. Related work

The related work to our research can be grouped in
two categories: the identification of information
sources and of knowledge in software maintenance.
Next we will introduce each one.

2.1 Sources of information in software
maintenance

The main work on this topic that we have found is
the one proposed for Seaman [24]. Seaman conducts a
research to identify the information gathering strategies
used by software maintainers. She identifies the main
kinds of sources of information used by maintainers
when they perform their jobs. This work is a good start
to the classification of the kinds of sources that could
be involved in a software maintenance process.

Other works have described the kinds of documents
involved in software maintenance. For example,
Briand et al. [3] propose a taxonomy to classify the
documents of the software maintenance process. Also
there are standards and methodologies for software
maintenance that define the documents required or
generated during the maintenance process proposed by
them [10, 18].

The previous works only mention the sources of
information or documents that could be involved in the
software maintenance process; they do not show how
those sources are used by the maintainers while they
perform their jobs, neither how to identify the
knowledge that could be obtained from those sources.

2.2 Knowledge in software maintenance

Probably, program comprehension is the first area
of research where the knowledge required by
maintainers was studied; for example, Mayrhauser and
Vans [13, 14] have studied how programmers create
mental models to understand the software they must
change, and what kind of knowledge is involved in
those models.

More recently, work on this topic have been done
from an ontological perspective, trying to identify the
main concepts involved in software maintenance by
defining ontologies to represent those concepts and
how are they related to each other [8, 9, 11, 17, 21].
The need for an ontology in software maintenance was
first introduced by Kitchenham et al. [11], they define
an ontology to identify the factors affecting the results
of empirical studies in software maintenance. Deridder
[8] proposes that an ontology can help to link the
artefacts of the development process and help
maintainers to find those artefacts, and reuse them.
Dias et al. [9, 17] developed an ontology to organize
the knowledge used in software maintenance. Their
ontology is an extension of that of Kitchenham et al.,
which introduces more detailed concepts involved in
the maintenance process. Finally, Ruiz et al. [21] also
extend the Kitchenham et al.’s ontology to define other
for the management of software maintenance projects.
The Ruiz et al.’s ontology considers both dynamic (i.e.
workflow) and static aspects of software maintenance,
while the other ontologies only consider static aspects.

The more relevant work for our research is that of
Oliveira et al. [17] which was used to develop the Dias
et al.’s ontology [9]. However, while these authors
have oriented they research on identifying the
knowledge used in software maintenance, we are also
interested on finding how this knowledge flows.

Next we describe the case studies performed to
observe how the knowledge flows through a software
maintenance group and the methodology followed in
the study.

3. The study

We conducted two case studies in two software
maintenance groups with duration of five months. The
first group was the department in charge of the
development and maintenance of the software systems
used to the management of a scientific research
institution. This department maintains applications of
five domain areas: finances, human and material
resources, academic productivity, and services for
students. The second group was a company that
develops and maintains software for telephone services
management. This company have more than 4000
clients across the Mexican country.

The studies were based on interviews, observation
and analysis of documentation. All the interviews were
recorded for later analysis. We also performed a
bibliographic research to compare our findings with
those that have been described in the literature. We
defined two taxonomies based on our research and the
previous work: one for classifying knowledge sources
and the other for classifying kinds of knowledge (for

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79
space limitations they are not detailed in this paper).
The methodology followed in the studies is described
next.

3.1 The methodology

The methodology is composed of four main steps,
as it is shown in Figure 1. The process proposed to
carry out these steps is an iterative one, because each
stage could generate information to complement the
others.

The first step starts by identifying the main
documents and people involved in the maintenance
process. Then the taxonomy is defined to classify the
information sources found; also an ontology can be
developed to help defining the relations between the
sources and the other elements of the maintenance
process.

To identify
knowledge sources

To identify kinds
of knowledge

To identify
knowledge flows

To identify faults in
the knowledge flow

To identify
knowledge sources

To identify kinds
of knowledge

To identify
knowledge flows

To identify faults in
the knowledge flow

Figure 1. Steps of the methodology followed in the case
studies.

The stage two starts by analysing the documents
identifyed in the first step; then, the kinds of
knowledge that can be obtained from the information
sources found is defined together with the knowledge
that the people involved in the maintenance process
have or require. In this step, the taxonomy and the
ontology could also help to classify the kinds of
knowledge and define their relations to the other
elements of the process.

In the third step a process modelling [7] approach is
very useful to identify how the knowledge and sources
of information are involved in the activities performed
by the maintenance group. To do this, the main
activities of the processes carried out by the
maintainers must be identified, also the decisions they
must make while they perform those activities. Then, a
graphic modelling technique can be used to model
these activities [15], showing people and roles
involved, the knowledge required by them to perform
the activities, and the sources they consult, or those
that could have information to help them to fulfil their
activities. These models are used to analyse how the
knowledge flows through the group while they perform

their activities; for example, what sources they consult
to do those or what documents are generated from
doing those.

Finally, in the fourth step the models are analysed
to find the problems that could be affecting the flow of
knowledge. For example, if the information generated
from the activities is not captured, or if there are
sources that could help to perform some activities, but
are not consulted by the people in charge. In this stage,
scenarios can help to show how these problems
detected affect the knowledge flow, and how this could
be solved. These scenarios could be used later to obtain
design requirements to the development of tools to
address those problems [5].

Since our main interest is to observe how the
knowledge flows through a software maintenance
group, also how this flow can be incremented, in this
paper we focus on the stages three and four which
address these goals.

3.2 Modelling knowledge flows

The modelling of the flow of knowledge in the
maintenance groups started by identifying the roles
played by the sources of information, and the
knowledge and experiences of the maintainers in the
decisions making process [23].

The knowledge cycle of Choo [6] proposes three
fields of use of the information: 1) to create a
representation of the environment, 2) to create
knowledge, and 3) to make decisions; these fields are
involved in a process where the shared information and
experience are used to generate the knowledge needed
to make decisions; then the use of this knowledge and
the experience obtained by applying it in the decision
making process creates new knowledge and experience
that could be later shared to others.

On the other hand, as Nonaka and Takeuchi
describe [16], knowledge creation is a process of
interactions between explicit and tacit knowledge.
Explicit knowledge can be expressed in words and
numbers, and shared in form of data or documents,
while tacit knowledge is more personal and hard to
formalize (for example abilities and experience). The
interactions between these kinds of knowledge create
four conversion patterns: socialization, when people
share tacit knowledge by interacting with others;
externalization, when tacit knowledge becomes
explicit by expressing it in formal ways; combination,
when explicit knowledge creates more explicit
knowledge by combining information that resides in
formal information sources like documents, etc.; and
internalization, when explicit knowledge creates tacit,
by consulting formal sources of information to obtain
knowledge [16].

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79

Based on the approaches of [6] and [16], we have
defined the generic model showed in Figure 2. The
model considers that when a maintainer must perform
an activity, s/he uses her/his knowledge and experience
to analyse the problem and find possible solutions.
Frequently, maintainers do not have all the knowledge
they need, therefore they consult other sources of
information to obtain it [27]; then, maintainers use all
these to decide which solution to implement. The
processes of analysing the problem and making
decisions generate new knowledge and experience for
the maintainers that can be later shared to the rest of
the group. They obtain and share knowledge by using
the conversion patterns described in [16].

Information
Sources

Shared Experiences

Knowledge

Analyzing the
problem and defining

possible solutions

Making
Decisions

Choosing and
implementing the most

suitable solutionGenerating new
knowledge and

experience

Maintainer

Sharing
experiences

Sharing
experiences

Socialization
Internalization

Externalization
Combination

Obtaining Knowledge

Applying previous knowledge
and experiences

Information
Sources

Shared Experiences

Information
Sources

Shared Experiences

Knowledge

Analyzing the
problem and defining

possible solutions

Making
Decisions

Choosing and
implementing the most

suitable solutionGenerating new
knowledge and

experience

Maintainer

Sharing
experiences

Sharing
experiences

Socialization
Internalization

Externalization
Combination

Socialization
Internalization

Externalization
Combination

Obtaining Knowledge

Applying previous knowledge
and experiences

Figure 2. Generic model for knowledge flow for software
maintainers.

The conceptual model enables the identification of
the knowledge involved in the activities performed by
the members of the group. Here, a graphic process
modelling technique can be very useful [15]. An
example of the latter is presented in Figure 3, which
shows the main activities performed in the definition of
the modification plan performed for one of the groups
studied. The model also shows the people involved in
those activities, the knowledge they have together with
their relevance to the activities modelled, and the main
sources used, created or modified in the activities.

Once the activities have been modelled, the next
step is to define the decisions that must be made by the
people involved. To do that, we used the schema
showed in Table 1. This schema helps to identify the
knowledge that the people in charge of the activities
must have to make the decisions needed, and the
sources of information they consult to obtain
information that helps them to make those decisions.
At this step, it is important to identify the mechanisms
that people can use to consult the sources; also, those
used to share the knowledge generated in the activities;
for example, the documentation of the modifications’
plan in Figure 3.

Chief of the
department

Project
leader

Modification
Request

Work Project
Plan

Project
Documentation

Software
engineers

Defining
modifications

plan

Documenting
the project

•Resources available
•Estimated time and
costs
•Modules of the
system that could be
modified
•Activities to
perform

•Requirements
•Resources assigned
•Resources required
•Project goals
•Estimated time and
cost

•Time and costs
restrictions
•Resources
available

•Time and cost estimation
•System structure
•Task that need to be done
•More suitable people for
the project

•Experience
with the system
to be maintained
•Time that can
take the
modifications

Chief of the
department
Chief of the
department

Project
leader
Project
leader

Modification
Request

Work Project
Plan

Project
Documentation

Software
engineers
Software
engineers

Defining
modifications

plan

Documenting
the project

•Resources available
•Estimated time and
costs
•Modules of the
system that could be
modified
•Activities to
perform

•Requirements
•Resources assigned
•Resources required
•Project goals
•Estimated time and
cost

•Time and costs
restrictions
•Resources
available

•Time and cost estimation
•System structure
•Task that need to be done
•More suitable people for
the project

•Experience
with the system
to be maintained
•Time that can
take the
modifications

Figure 3. This illustrates a model of a modification plan

definition process.

The analysis of the activities performed by the
maintainers, using the graphical model and the
information from the tables, are later used to
understand how the knowledge flows through the team,
and what techniques they use to share and obtain that
knowledge. Finally this analysis can help to identify
the problems that are affecting that flow, in order to
provide tools to address those problems. Next we
describe how the problems were identified.

Table 1. Schema used to identify knowledge in decision
making.

Role
Activity

Project leader
To define modification plan

Decision

To define required resources
To define main tasks to perform
To assign tasks to the participants of the project
To estimate the time the project would consume

Knowledge

Previous projects experiences
Requirements and restrictions of the project
Abilities and experience of each of the possible participants
of the project

Sources of information
Name Information Consulted at

Previous projects
documentation

Resources required by
previous projects

Documents files,
modifications logbook

Chief department Available resources; time and
cost restrictions

Telephone, Physical
address, Email

Software
engineers

Experience with the system
that will be modified; time that
could consume the
modifications; time availability

Telephone, Physical
address, Email

3.3 Using scenarios to identify problems in the
knowledge flow

Scenarios can be a useful approach to identify the
problems that are affecting the flow of knowledge, and
how those can be addressed. Scenarios also enable the

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79
identification of design requirements for software
systems and make feasible the participation of users
during the requirements specification stage [5].
Particularly, the scenarios identified showed problems
related to two main domains: experts finding and
document management. The main problem that these
scenarios highlighted was that, in many occasions
people do not consult sources that could be useful to
them, because they do not know about their existence,
their location or the knowledge they could have; to
exemplify this, next we reproduce one of the scenarios
identified.

Expert finding. Mary is a software engineer that
must make some changes in the finances system. Since
her knowledge in the domain of finances is not good
enough, the changes have taken more than a week of
the estimated time. At the end of the week, Susan, the
chief of the department, while she was checking the
advances of the project, she detects the delay, and asks
Mary the reasons of that delay. Mary tells Susan the
problem and, since Susan has experience with finances.
She tells Mary how the problem could be solved.
Finally, Mary solves the problem the same day.

As we can observe, there was knowledge in the
group that could have helped to solve the problem, but
it was not used sooner because of ignorance of the
people who could have benefited from it. This fact has
already been commented on by other authors, such as
Szulanski [26] who found that the number one barrier
to knowledge sharing was "ignorance": the sub-units
are ignorant of the knowledge that exists in the
organization, or the sub-units possessing the
knowledge are ignorant of the fact that another sub-
unit needs such knowledge. Thus, it is important to
address this problem in order to increase the
knowledge flow.

Software Agents are a technology that can help
addresing these kinds of problems. Agents can act like
personal assistants that know the engineers’ profile,
identify the needs of knowledge and search for
knowledge sources that can help the engineer to fulfil
his/her job [12]. Based on the latter and some
requirements obtained from the analysis of the
scenarios identified, we have developed an agent based
prototype to manage knowledge; this is presented in
the next section.

4. A multi-agent system to manage
knowledge in software maintenance

As stated before, one of the main problems that
affect the flow of knowledge is that people often do not
know the sources of information that can be useful
when performing some activity, therefore they do not

consult them; this is one of the main challenges on
applying knowledge management in software
engineering [22].

Trying to solve this problem, we have developed an
agent based prototype for knowledge management in
software maintenance [20]. Agents have characteristics
that can be useful to solve these kinds of problems;
first of all, agents are proactive; this means they act
automatically when it is necessary, so they can capture
and manage information without direct intervention of
users. For example, acting like a personal assistant
[12].

Moreover, agents can manage both distributed and
local knowledge. This is an important feature since the
software maintenance knowledge is generated by
different sources and often from different places.

Another important issue is that agents can learn
from their own experience. Consequently, the system is
expected to become more efficient with time since the
agents have learnt from their previous mistakes and
successes [12].

Finally, agents may use different reasoning
techniques depending on the situation. For instance,
they can use ID3 algorithms to learn from previous
experiences and case-based reasoning to advise a client
how to solve a problem.

Next the multi-agent architecture of the system is
presented.

4.1 Multi-agent architecture

To design the multi-agent architecture, we have
followed MESSAGE, a Methodology for Engineering
Systems of Software Agents [4]. MESSAGE proposes
different levels of analysis; however it mainly focuses
on the first 2. At level 0, the system is viewed as a set
of organizations that interact with resources, actors, or
other organizations; its resulting model gives an overall
view of the system, its environment, and its global
functionality. Subsequent refinements define models at
level 1, level 2 and so on. Moving from level 0 to level
1 the analysis focuses on identifying the types of
agents and roles, such as it is illustrated in the next
paragraphs through the application of the methodology
to the definition of our architecture.

The architecture has five main types of agents:
staff, product, client, project and directory agents
(Figure 4).

The staff agent is a mediator between the
maintainer and the system. It acts like an assistant to
the maintainer. The rest of the agents of the system
communicate with the latter through this agent. The
staff agent monitors the maintainer’s activities and
requests to the Knowledge Manager Agent (KMA) to
search for knowledge sources that can help the

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79
maintainer to perform his/her job. This agent has
information that could be used to identify the
maintainer’s profile, such as which kinds of knowledge
or expertise s/he has or which kinds of sources s/he
often consults.

The product agent manages information related to a
product, including its maintenance requests and the
main elements that integrate the product
(documentation, source code, databases, etc.). The
main role of this agent is to have updated information
about the modifications carried out in a product and the
people that were involved in it.

When the product agent receives a maintenance
request, it creates a new project and proposes the tasks
that must be done in order to fulfil the request. The
agent also proposes the most suitable people to
perform those tasks and sends the proposal to the staff
agent in charge of assisting the maintainance engineer
that plays the role of project manager. The staff agent
informs the maintainer of these proposals, and s/he
decides if the proposal is accepted or modified. Once
the proposal has been accepted, the project agent starts
working.

Server

Maintainer

Directory
agent

Main container Client agent

Clients agents
container

Network

KMA

User interface

KSMA
Staff agent

Staff agent container

Global
repository

Local
repository

Product
agent

Product agent container

Project
agent

KMA KSMA

Client

User
Interface

KMA.- Knowledge Manager Agent
KSMA.- Knowledge Source Manager Agent

Server

MaintainerMaintainer

Directory
agent

Main container Client agent

Clients agents
container

Client agent

Clients agents
container

Network

KMA

User interface

KSMA
Staff agent

Staff agent container

Global
repository

Local
repository

Product
agent

Product agent container

Project
agent

KMA KSMA

Product
agent

Product agent container

Project
agent

KMA KSMA

Client

User
Interface

KMA.- Knowledge Manager Agent
KSMA.- Knowledge Source Manager Agent

Figure 4. Multi-Agent Architecture for knowledge
management in the software maintenance process.

Each project is managed by a project agent, which
is in charge of informing the maintainers involved in a
project about the tasks that they should perform. To do
this, the project agents communicate with the staff
agents. The project agents also control the evolution of
the projects.

The client agent manages information related to the
maintenance requests or error reports performed by a
client. There is one agent of this kind per client. Its
main role is to assist them when they send a
maintenance request, directing it to the corresponding
product agent. Another important activity of this agent

is to inform the client about the state of the
maintenance requests sent previously by him/her, by
consulting the project agents in charge of this request.

The directory agent manages information required
by agents to know how to communicate with other
agents that are active in the system. This agent knows
the type, name, and electronic address of all active
agents. Its main role is to control the different agents
that are active in the system at each moment.

Two auxiliary types of agents are considered in the
architecture, the Knowledge Manager Agent (KMA)
and the Knowledge Source Manager Agent (KSMA).

The KMA is in charge of providing support in the
generation of knowledge and the search of knowledge
sources. This kind of agent is in charge of managing
the knowledge base. The staff’ KMA generates new
knowledge from the information obtained from the
maintainance egineers in their daily work. For
example, if a maintainer is modifying a program
developed in the Java language, the KMA can infer
that he has knowledge of this language and add his/her
name to the knowledge base as a possible source of
knowledge about Java. On the other hand, the product
KMA generates knowledge related to the activities
performed on the product. It could identify patterns on
the modifications done to the different modules. For
example, it could detect that there are modules or
documents that should be modified or consulted when
a specific module is modified, and in this way, it could
indicate which modules or programs can be affected by
the changes done on others.

Finally, the KSMA has control over the knowledge
sources, such as electronic documents. It knows the
physical location of those sources, as well as the
mechanisms used to consult them. Its main role is to
control access to the sources. The documents located in
the workspace of the maintainers, or those that are part
of a product, such as the documentation of the system
or the user documentation, are accessed through this
agent. The KSMA is also in charge of the recovery of
documents located in places different from its
workspace. If those documents are managed by another
KSMA, the first KSMA should communicate with the
other to request the documents.

4.2 Architecture’s implementation

To evaluate the feasibility of the implementation of
the architecture, we have developed a prototype. The
requirements were obtained from the scenarios
identified in the two case studies.

The information managed by the prototype was
obtained from one of the organizations where the case
studies were done. The prototype was tested
specifically following the scenario described next.

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79

First, the maintainer looks at a list of the projects
s/he has assigned. These are shown by the staff agent
through its screen. When the maintainer selects one
project, an event is triggered and captured by the staff
agent, which obtains the information of the project,
identifies knowledge topics (system and module where
the problem appeared, kind of problem, etc.) and
generates some rules to request the KMA to search for
knowledge sources. To create the rules, the staff agent
tries to identify the knowledge that the engineer would
need to do the assignment. Also the agent considers the
types of sources the engineer consults, assigning more
relevance to the sources that he consults most
frequently. When the search has finished, the KMA
sends a message to the staff agent informing it about
the sources found. The staff agent displays a message
with the number of knowledge sources found in order
to inform the maintainer of their availability. Finally, if
the engineer wants to look for the sources, s/he chooses
a button in the staff agent screen, and the agent will
display a window with the list of sources grouped by
categories (see Figure 5). When the maintainer selects
one source from the list, the window shows
information related to that source such as: location, the
knowledge that it has, etc.

The system helps to find and locate sources of
information that can be relevant to the activities

performed for maintainers. In this way, sources that
could not be consulted for ignorance of their existence
or location could now be consulted thanks to automatic
search the system does, informing to the maintainer
about those sources, so that they can look if they could
help them to complete their jobs.

5. Conclusions and future work

Knowledge is a crucial factor for software
maintenance. Maintainers must make many decisions
and need different kinds of knowledge to do it.
Frequently they do not have enough knowledge to
make the best decision and need to consult other
sources of information. Therefore, it is important to
understand how they obtain and share that knowledge,
and, in general, how that knowledge flows through the
software maintenance groups, in order to provide tools
that help them to increase that flow.

In this paper we presented a qualitative approach to
the identification of the flow of knowledge in software
maintenance teams. This approach has been applied in
two case studies; from these studies some problems
that affect the flow of knowledge were identified. The
results of the studies gave us useful insights to
determine how a multi-agent knowledge management
system can address some of the problems identified.

General data
about the source

Shows the diferent
locations of the source

Shows the kind of knowledge
that the source has

List of sources
found

General data
about the source

Shows the diferent
locations of the source

Shows the kind of knowledge
that the source has

List of sources
found

Figure 5. Screen shoot of the knowledge sources list.

Rodríguez et al., 2004, Identifying Knowledge Management Needs in Software Maintenance Groups: A qualitative
approach, In: Proc. of the 5th Mexican Intl. Conf. on Computer Science (ENC 2004), Colima, México, 20-24
September, Baeza-Yates et al. (Eds.), IEEE Computer Society Press, p. 72-79

From our work, we conclude that our approach can
be useful to identify knowledge management needs in
software maintenance teams, and design requirements
for tools to address those needs.

As future work, we are planning to conclude the
knowledge management tool, and to evaluate it in a
software maintenance group.

Acknowledgements

This work is partially supported by CONACYT under
grant C01-40799 and the scholarship 164739 provided to the
first author, and the MAS project (grant number TIC2003-
02737-C02-02), Ministerio de Ciencia y Tecnología, SPAIN.

References

[1] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic,
"Preface", in Managing Software Engineering
Knowledge, A. Aurum, R. Jeffery, C. Wohlin, and M.
Handzic, Eds. Berlin: Springer, 2003, pp. ix-xv.

[2] K. Bennet and V. Rajlich, "Software Maintenance and
Evolution: A Roadmap", In the Future of Software
Engineering, Intl. Conference on Software Engineering
(ICSE'2000), Limerick Ireland, 2000.

[3] L. C. Briand, V. R. Basili, Y.-M. Kim, and D. R. Squier,
"A Change Analysis Process to Characterize Software
Maintenance Projects", In Intl. Conference on Software
Maintenance (ICSM'1994), Victoria, BC, Canada, 1994.

[4] G. Caire, W. Coulier, F. Garijo, J. Gómez, J. Pavón, F.
Leal, P. Chainho, P. Kearney, J. Stark, R. Evans, and P.
Massonet, “Agent Oriented Analysis using MESSAGE/
UML", In Agent Oriented Software Engineering, 2001.

[5] J. M. Carroll and M. B. Rosson, "Getting Around the
Task-Artifact Cycle: How to Make Claims and Design by
Scenario", ACM Transactions on Information Systems,
10(2), pp. 181-212, 1992.

[6] C. W. Choo, La Organización Inteligente: el Empleo de la
Información para dar Significado, Crear Conocimiento y
Tomar Decisiones, Oxford, USA: Oxford University
Press, 1999.

[7] B. Curtis, M. I. Kellner, and J. Over, "Process Modeling",
Communications of the ACM, 35(4), pp. 75-90, 1992.

[8] D. Deridder, "A Concept-Oriented Approach to Support
Software Maintenance and Reuse Activities", In Joint
Conference on Knowledge-Based Software Engineering,
Maribor, Eslovenia, 2002.

[9] M. G. B. Dias, N. Anquetil, and K. M. d. Oliveira,
"Organizing the Knowledge Used in Software
Maintenance", Journal of Universal Computer Science,
9(7), pp. 641-658, 2003.

[10] ISO/IEC, "ISO/IEC FDIS 14764:1999, Software
Engineering-Software Maintenance", Secretariat:
Standard Council of Canada, Standard 1999.

[11] B. A. Kitchenham, G. H. Travassos, A. v. Mayrhauser,
F. Niessink, N. F. Schneidewind, J. Singer, S. Takada, R.
Vehvilainen, and H. Yang, "Towards an ontology of
software maintenance", Journal of Software Maintenance:
Research and Practice, 11(6), pp. 365-389, 1999.

[12] P. Maes, "Agents that reduce work and information
overload", Communications of the ACM, 37(7), pp. 31-
40, 1994.

[13] A. v. Mayrhauser and A. M. Vans, "Program
Comprehension During Software Maintenance and
Evolution", IEEE Computer, 28(8), pp. 44-55, 1995.

[14] A. v. Mayrhauser and A. M. Vans, "Identification of
Dynamic Comprehension Processes During Large Scale
Maintenance", IEEE Transactions on Software
Engineering, 22(6), pp. 424-437, 1996.

[15] A. Monk and S. Howard, "The Rich Picture: A Tool for
Reasoning About Work Context", Interactions, 5(2), pp.
21-30, 1998.

[16] I. Nonaka and H. Takeuchi, The Knowledge-Creating
Company, Oxford University Press, 1995.

[17] K. M. d. Oliveira, N. Anquetil, M. G. B. Dias, M.
Ramal, and R. Meneses, "Knowledge for Software
Maintenance", In Proc. of the 15th Intl. Conference on
Software Engineering and Knowledge Engineering, San
Francisco, California, USA, 2003.

[18] M. Polo, M. Piattini, and F. Ruiz, "Using a Qualitative
Research Method for Building a Software Maintenance
Methodology", Software Practice & Experience, 32(13),
pp. 1239-1260, 2002.

[19] O. N. Robillard, "The Role of Knowledge in Software
Development", Communications of the ACM, 42(1), pp.
87-92, 1999.

[20] O. M. Rodriguez, A. Vizcaino, A. I. Martínez, M.
Piattini, and J. Favela, "Using a Multi-Agent Architecture
to Manage Knowledge in the Software Maintenance
Process", In Intl. Conference on Knowledge-Based
Intelligent Information & Engineering Systems,
Wellington, New Zealand, 2004.

[21] F. Ruiz, A. Vizcaíno, M. Piattini, and F. García, "An
Ontology for the Management of Software Maintenance
Projects", Intl. Journal of Software Engineering and
Knowledge Engineering, accepted for publication, 2004.

[22] I. Rus, M. Lindvall, and S. S. Sinha, "Knowledge
Management in Software Engineering: A State of the Art
Report", Data & Analysis Center for Software: ITT
Industries, Rome, NY, 2001.

[23] V. L. Sauter, "Intuitive Decision-Making",
Communications of the ACM, 42(6), pp. 109-115, 1999.

[24] C. Seaman, "The Information Gathering Strategies of
Software Maintainers", In Proc. of the Intl. Conference on
Software Maintenance, 2002.

[25] J. Singer, "Practices of Software Maintenance", In Proc.
of the Intl. Conference on Software Maintenance, 1998.

[26] G. Szulanski, "Intra-Firm Transfer of Best Practices
Project", In American Productivity and Quality Centre,
Houston, Texas, 1994.

[27] D. B. Walz, J. J. Elam, and B. Curtis, "Inside a Software
Design Team: Knowledge Acquisition, Sharing, and
Integration", Communications of the ACM, 36(10), pp.
63-77, 1993.

