
Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

Using a Multi-Agent Architecture to Manage Knowledge
in the Software Maintenance Process

Oscar M. Rodríguez1, Aurora Vizcaíno2, Ana I. Martínez1, Mario Piattini2, Jesús
Favela1

1CICESE, Computer Science Department, México
{orodrigu | martinea | favela}@cicese.mx

2Alarcos Research group. University of Castilla-La Mancha, Escuela Superior de Informática,
España

{Aurora.Vizcaíno | Mario.Piattini}@uclm.es

Abstract. In the software maintenance process a considerable amount of
information needs to be managed. This information often comes from diverse
and distributed sources. However, very few software companies use knowledge
management techniques to efficiently manage this information. This work
presents a multi-agent architecture designed to manage the information and
knowledge generated during the software maintenance process. The architecture
has different types of agents, each devoted to a particular type of information.
Agents can use different techniques to generate new knowledge from previous
information and to learn from their own experience. Thereby, the agents can
become experts in the type of knowledge they are responsible for and can
communicate with each other to share this knowledge.

1. Introduction

The software maintenance process involves considerable effort and costs. In fact, this
process is considered the most expensive of the software development life-cycle [11].
On the other hand, maintenance work requires the management of a large amount of
information and knowledge [5, 8]. This information often comes from diverse sources
such as the products to be maintained, the people who work in this process, and the
activities performed to update and evolve the software. However, very few software
companies use knowledge management techniques to manage this information
efficiently. Appropriate knowledge management would help software companies
improve performance, control costs and decrease effort by taking advantage of
previous solutions that could be reused to avoid repeating previous mistakes [5]. This
work presents a multi-agent architecture designed to manage the information and
knowledge generated during software maintenance. The content of this paper is
organized as follows: Section 2 justifies the need for knowledge management in
software maintenance. Section 3 presents the architecture designed to encourage and
facilitate the reuse of knowledge and previous experience in software maintenance,
and an initial implementation of the architecture. Finally, conclusions and future work
are presented in Section 4.

Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

2. Knowledge Problems in Software Maintenance

Maintenance engineers need different kinds of knowledge to perform their job. In the
course of their activities different types of maintenance could be required: corrective,
perceptive, adaptive or preventive. Each type of maintenance has its own features but
all of them follow a similar process, summarized in Figure 1: The maintenance
engineer receives the request for modification. Then, s/he identifies which parts of the
system should be modified and the modules affected by this modification. With this
information s/he plans the activities to be performed. The engineer, unconsciously,
takes advantage of his/her experience to carry out all these tasks. During this process
s/he might consult other resources, such as a person who has already solved a similar
problem or who has worked with that software before, alternatively s/he will consult
documentation related to the software to be modified. But the problem arises when
any of these sources of information is not accessible because either the employees
with experience have left the organization [3], there is not enough documentation, or
this is not up to date [13]. In these cases, the engineer will analyse the source code [6]
which often requires considerable effort. In fact, sources of knowledge are sometimes
so difficult to find that the maintenance engineer often choose to go directly to the
code. So it is important to provide mechanisms to support the compilation and
management of the knowledge generated during the software maintenance process, in
order to avoid its loss and to foster the reuse of information and lessons learned.

Maintainer

Requirements

Maintenance
request

Problem
report

Identify system’s elements that will be
modified, and which ones could be

affected by the changes.

List of modules, db
tables, db reports,

etc. to be modified.

Changes
implementation

User
Other team
members

Documentation

Source
Code

Executable
program

System

Project

Document
Idea

Maintainer

Requirements

Maintenance
request

Problem
report

Identify system’s elements that will be
modified, and which ones could be

affected by the changes.

List of modules, db
tables, db reports,

etc. to be modified.

Changes
implementation

User
Other team
members

Documentation

Source
Code

Executable
program

System

Project

Document
Idea

Figure 1. Knowledge sources that help the maintenance engineer to do his/her job.

Frequently, information sources are often not consulted because of people ignore
their existence or location. Moreover, sometimes the organization itself is not aware
of the location of the pockets of knowledge or expertise [10]. This is the number one
barrier to knowledge sharing [14]. We observed this problem in two case studies
carried out in two software maintenance teams. The study showed that on many
occasions, organizations have documents or people with the information or
knowledge necessary to support or help the maintenance engineers to do their
activities, but either the latter did not know that other documents or people could have
provided useful information to help them to complete the assignment or the people
with useful information did not know what the latter was working on.

Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

In order to address these problems, we are designing a multi-agent system that
acquires and manages information generated during the software maintenance
process. The multi-agent architecture of the system is described in the next section.

3. The Multi-Agent Architecture

There are several reasons why agents are good technical alternatives for knowledge
management software [15]. First of all, agents are proactive. This means they act
automatically when it is necessary. One of the obstacles to implementing knowledge
management in software organizations is that employees do not have time to
introduce or search for knowledge [8]. During their daily work, different kinds of
knowledge and experiences are created, but not captured in a formal way, they are
only in the engineer’s head. In order to reduce the loss and waste of knowledge in
software maintenance, it is important to avoid this problem, but without increasing the
maintainer’s work. Agents, because they are proactive, can capture and manage
information automatically. For example, acting like a personal assistant that knows
the engineer’s profile and identifies the needs of knowledge and search for sources
that can help the engineer to fulfill his/her job [9].

Moreover, agents can manage both distributed and local knowledge. This is an
important feature since the software maintenance knowledge is generated by different
sources and often from different places.

Another important issue is that agents can learn from their own experience.
Consequently, the system is expected to become more efficient with time since the
agents have learnt from their previous mistakes and successes [9].

Finally, in a multi-agent system each agent may utilize different reasoning
techniques depending on the situation. For instance, they can use ID3 algorithms to
learn from previous experiences and case-based reasoning to advise a client how to
solve a problem.

3.1 Architecture’s Description

In order to design the multi-agent architecture, we have followed MESSAGE, a
Methodology for Engineering Systems of Software Agents [4]. MESSAGE proposes
different levels of analysis. At level 1 analysis focuses on the system itself,
identifying the types of agents and roles, which are described in the next paragraphs.

The architecture has five main types of agent (see Figure 2): staff, product, client,
project and directory agents.

The staff agent is a mediator between the maintainer and the system. It acts like an
assistant to the maintenance engineer (ME). The rest of the agents of the system
communicate with the ME through this agent. The staff agent monitors the ME
activities and requests the KMA to search for knowledge sources that can help the
ME to perform his/her job. This agent has information that could be used to identify
the ME profile, such as which kinds of knowledge or expertise s/he has or which
kinds of sources s/he often consults.

Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

The product agent manages information related to a product, including its
maintenance requests and the main elements that integrate the product
(documentation, source code, databases, etc.). The main role of this agent is to have
updated information about the modifications carried out in a product and the people
that were involved in it.

When the product agent receives a maintenance request sent by a client, it creates a
new project and proposes the tasks that must be done in order to fulfill the request.
The agent also proposes the most suitable people to perform those tasks and sends the
proposal to the staff agent in charge to assist the ME that plays the role of project
manager. The staff agent informs the ME of these proposals, and s/he decides if the
proposal is accepted or modified. Once the proposal has been accepted, the project
agent starts to work.

Each project is managed by a project agent, which is in charge of informing the
ME’s involved in a project about the tasks that they should perform. To do this, the
project agents communicate with the staff agents. The project agents also control the
evolution of the projects.

Server

Client

KMA

User interface

KSMA
Staff agent

Directory
agent

Main
container

Client agent

Clients agents
container

Product
agent

Product agent container

Project
agent

KMA

Network

Personal agent
container

User
Interface Global

repository

Local
repository

KSMAKSMA.- Knowledge Sources
Manager Agent

KMA.- Knowledge Manager
Agent

Maintainer

Server

ClientClient

KMA

User interface

KSMA
Staff agent

Directory
agent

Main
container

Client agent

Clients agents
container

Product
agent

Product agent container

Project
agent

KMA

Network

Personal agent
container

User
Interface Global

repository

Local
repository

KSMAKSMA.- Knowledge Sources
Manager Agent

KMA.- Knowledge Manager
Agent

KSMA.- Knowledge Sources
Manager Agent

KMA.- Knowledge Manager
Agent

Maintainer

Figure 2. Agent based architecture for a software maintenance knowledge management
system.

The client agent manages information related to the maintenance requests or error
reports performed by a client. There is one agent of this kind per client. Its main role
is to assist them when they send a maintenance request, directing it to the
corresponding product agent. Another important activity of this agent is to inform the
client about the state of the maintenance requests sent previously by him/her, by
consulting the project agents in charge of this request.

The directory agent manages information required by agents to know how to
communicate with other agents that are active in the system. This agent knows the
type, name, and electronic address of all active agents. Its main role is to control the
different agents that are active in the system at each moment.

Two auxiliary types of agents are considered in the architecture, the Knowledge
Manager Agent (KMA) and the Knowledge Source Manager Agent (KSMA).

The KMA is in charge of providing support in the generation of knowledge and the
search of knowledge sources. This kind of agent is in charge of managing the

Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

knowledge base. The staff KMA generates new knowledge from the information
obtained from the ME’s in their daily work. For example, if a ME is modifying a
program developed in the Java language, the KMA can infer that the ME has
knowledge of this language and add his/her name to the knowledge base as a possible
source of knowledge about Java. On the other hand, the product KMA generates
knowledge related to the activities performed on the product. It could identify patterns
on the modifications done to the different modules. For example, it could detect that
there are modules or documents that should be modified or consulted when a specific
module is modified, and in this way, it could indicate which modules or programs can
be affected by the changes done on others.

Finally, the KSMA has control over the knowledge sources, such as electronic
documents. It knows the physical location of those sources, as well as the mechanisms
used to consult them. Its main role is to control access to the sources. The documents
located in the workspace of the ME’s, or those that are part of a product, such as the
documentation of the system or the user documentation, are accessed through this
agent. The KSMA is also in charge of the recovery of documents located in places
different from its workspace. If those documents are managed by another KSMA, the
first KSMA should communicate with the other to request the documents.

3.2 Implementation of the Architecture

To evaluate the feasibility of the implementation of the architecture, we have
developed a prototype. The requirements were obtained from scenarios identified in
the two case studies previously mentioned.

The information managed by the prototype was obtained from one of the
organizations where the case studies were performed. The prototype was tested
specifically following the scenario described next.

First, the maintenance engineers see a list of the projects they are assigned. These
are shown by the staff agent through its GUI. When an engineer selects one project,
an event is triggered and captured by the staff agent, which obtains the information of
the project, identifies knowledge topics (system and module where the problem
appeared, kind of problem, etc.) and generates some rules to request the KMA to
search for knowledge sources. To create the rules, the staff agent tries to identify the
knowledge that the engineer would need to carry out the assignment. Also the agent
considers the types of sources the engineer consults, assigning more relevance to the
sources that the engineer consults most frequently. When the search has finished, the
KMA sends a message to the staff agent informing it about the sources found. The
staff agent displays a message with the number of sources found in order to inform
the engineer. Finally, if the maintenance engineer wants to look for the sources found,
s/he chooses a button in the staff agent GUI, and the agent will display a window with
the list of sources grouped by kind (see Figure 3). When the maintainer selects one
source from the list, the window shows some information related to that source:
location, knowledge that it has, etc.

JADE was chosen as the platform for implementing the multi-agent prototype,
since it is FIPA compliant, and provides mechanisms which define ontologies and

Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

content languages that make it easy to develop the language for agent communication.
Moreover, JADE has applications which monitor some of the agent behaviours [2].

As shown in the architecture presented in Figure 2, the prototype has two types of
repositories of information. One is where local information related to specific tasks is
stored and the other is a global repository where more generic knowledge is stored.
Data are represented as XML documents and managed by XINDICE, a XML
database [1]. The data are classified following an ontology for software maintenance
proposed in [12], which is an extension of that of [7].

General data
about the source

Shows the diferent
locations of the source

Shows the kind of knowledge
that the source has

List of sources
found

General data
about the source

Shows the diferent
locations of the source

Shows the kind of knowledge
that the source has

List of sources
found

Figure 3. Window that shows the list of knowledge sources found.

4. Conclusions and Future Work

This paper presents an architecture for a multi-agent system in charge of storing and
managing knowledge, expertise and lessons learned generated during the software
maintenance process. The architecture of the system is formed from different kinds of
agent in charge of managing a specific type of knowledge, thus they can become
expert in a particular kind of knowledge and share it with others when they need it.

A initial prototype has been developed in order to test whether it is feasible to
implement a knowledge management system for software maintenance based on the
proposed architecture. The prototype enable us to track scenarios that show how a
knowledge management tool can help to solve some of the problems detected in the
case studies. For instance, how to find experts. Once this prototype is finished we are

Rodríguez et al., 2004, "Using a Multi-Agent Architecture to Manage Knowledge in
the Software Maintenance Process", Lecture Notes in Artificial Intelligence, Springer,
Vol. 3213: p. 1181-1187.

planning to perform a case study to evaluate how the system is perceived by a
software maintenance group and how it can be improved.

Acknowledgements
This work is partially supported by CONACYT under grant C01-40799 and the
scholarship 164739 provided to the first author, and the MAS project (grant number
TIC2003-02737-C02-02), Ministerio de Ciencia y Tecnología, SPAIN.

References
[1]. Apache-Software-Foundation, "Apache Xindice official site", (2004),

http://xml.apache.org/xindice/, consulted at 16-feb-2004.
[2]. F. Bellifemine, A. Poggi and G. Rimassa, "Developing multi-agent systems with a FIPA-

compliant agent framework", Software practice &experience, 31, (2001), p. 103-128.
[3]. K. Bennet and V. Rajlich, "Software Maintenance and Evolution: A Roadmap", in The

Future of Software Engineering, International Conference on Software Engineering
(ICSE'2000), Limerick Ireland, IEEE Computer Society Press, (2000), p. 73-87.

[4]. G. Caire, W. Coulier, F. Garijo, J. Gómez, J. Pavón, F. Leal, P. Chainho, P. Kearney, J.
Stark, R. Evans and P. Massonet, "Agent Oriented Analysis using MESSAGE/UML", in
Agent Oriented Software Engineering, (2001), p. 119-135.

[5]. T. Dingsoyr and R. Conradi, "A survey of case studies of the use of knowledge
management in software engineering", International Journal of Software Engineering and
Knowledge Engineering, 12(4), (2002), p. 391-414.

[6]. ISO/IEC, "ISO/IEC FDIS 14764:1999, Software Engineering - Software Maintenance".
Secretariat : Standard Council of Canada. (1999).

[7]. B. A. Kitchenham, G. H. Travassos, A. v. Mayrhauser, F. Niessink, N. F. Schneidewind, J.
Singer, S. Takada, R. Vehvilainen and H. Yang, "Towards an ontology of software
maintenance", Journal of Software Maintenance: Research and Practice, 11(6), (1999), p.
365-389.

[8]. M. Lindvall and I. Rus, "Knowledge Management for Software Organizations", in
Managing Software Engineering Knowledge, Aurum, A., et al., (eds.), Springer, Berlin,
(2003), p. 73-94.

[9]. P. Maes, "Agents that reduce work and information overload", Communications of the
ACM, 37(7), (1994), p. 31-40.

[10]. J. Nebus, "Framing the Knowledge Search Problem: Whom Do We Contact and Why Do
We Contact Them?" in Academy of Management Best Papers Proceedings, (2001), p. h1-
h7.

[11]. M. Polo, M. Piattini and F. Ruiz, "Using a Qualitative Research Method for Building a
Software Maintenance Methodology", Software Practice & Experience, 32(13), (2002), p.
1239-1260.

[12]. F. Ruiz, A. Vizcaíno Barceló, M. Piattini and F. García, "An Ontology for the
Management of Software Maintenance Projects", International Journal of Software
Engineering and Knowledge Engineering, (2004), Accepted for publication.

[13]. J. Singer, "Practices of Software Maintenance", in Proceedings of the International
Conference on Software Maintenance, (1998), p. 139-145.

[14]. G. Szulanski, "Intra-Firm Transfer of Best Practices Project", in American Productivity
and Quality Centre, Houston, Texas, (1994), p. 2-19.

[15]. C. A. Tacla and J.-P. Barthès, "A Multi-agent Architecture for KM Systems", in IEEE
International Symposium on Advanced Distributed Computing Systems (ISADS 2002),
Guadalajara, México, IEEE Computer Society Press, (2002), p. 1-12.

