
Abstract
The 21264 is the third generation Alpha microprocessor
from Compaq Computer (formerly Digital Equipment)
Corporation. This microprocessor achieves the industry-
leading performance levels of 30+ Specint95 and 50+
Specfp95. In addition to the aggressive 600 MHz cycle
time in a 0.35 um CMOS process, there are also many
architectural features that enable the outstanding
performance level of the 21264. This paper discusses
many of these architectural techniques, which include an
out-of-order and speculative execution pipeline coupled
with a high-performance memory system.

1 Introduction
The Alpha Microprocessor has been the performance

leader since its introduction in 1992. An unequalled cycle
time at the time, facilitated by a clean RISC architecture
and leading edge design techniques, provided much of the
performance difference. The 21264 (EV6) is the third
generation super-scalar Alpha microprocessor. (See
[Dob92][Edm95] for descriptions of the prior two
generations.) In this design, absolute performance
leadership was again a project goal. The 21264 achieves
this goal using a unique combination of advanced circuit
and architectural techniques.

Detailed architectural and circuit analysis in the early
stages of the 21264 project showed that more aggressive
micro-architectural techniques were possible while
continuing the leadership clock frequencies that have
become an Alpha tradition. The 21264 shows that a clean
RISC architecture not only allows for a very fast clock
rate, currently up to 600 MHz, but it also allows for
sophisticated micro-architectural techniques that
maximize the number of instructions executed every
cycle. This combination results in industry-leading
performance levels for the third consecutive Alpha
generation.

                                                          
1 Work performed while a Digital Equipment (now
Compaq) employee. Currently employed by C-Port
Corporation.

The 21264 is a super-scalar microprocessor with out-
of-order and speculative execution. Out-of-order
execution implies that instructions can execute in an order
that is different from the order that the instructions are
fetched. In effect, instructions execute as soon as possible.
This allows for faster execution since critical path
computations are started and completed as soon as
possible. In addition, the 21264 employs speculative
execution to maximize performance. It speculatively
fetches and executes instructions even though it may not
know immediately whether the instruction will be on the
final execution path. This is particularly useful, for
instance, when the 21264 predicts branch directions and
speculatively executes down the predicted path. The
sophisticated branch prediction in the 21264 coupled with
speculative and dynamic execution extracts the most
instruction parallelism from applications.

The 21264 memory system is another enabler of the
high performance levels of the 21264. On chip and off-
chip caches provide for very low latency data access. In
addition, many memory references can be serviced in
parallel to all caches in the 21264 as well as to the off-
chip memory system. This allows for very high
bandwidth data access.

This paper describes many of the micro-architectural
techniques used to achieve the high performance levels in
the 21264 Alpha microprocessor. (Two other references
to the 21264 are: [Gie97][Lei97].). Figure 1 shows a high-
level overview of the 21264 pipeline. Stage 0 is the
instruction fetch stage that provides four instructions per
cycle from the instruction cache. Stage 1 assigns
instructions to slots associated with the integer and
floating-point queues. The rename (or map) stage (2)
maps instruction “virtual” registers to internal “physical”
registers and allocates new physical registers for
instruction results. The issue (or queue) stage (3)
maintains an inventory from which it dynamically selects
to issue up to 6 instructions – this is where instruction
issue reordering takes place. Stages 4 and higher
constitute the instruction execution stages that support all
arithmetic and memory operations. Each stage is
described in more detail below.
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2 Instruction Fetch
The instruction fetch stage is the beginning of the

21264 instruction pipeline. Four instructions are fetched
each cycle to be delivered to the out-of-order execution
engine. The 21264 uses many architectural techniques to
provide maximum fetch efficiency. One important enabler
is a large, 64K byte, two-way set-associative instruction
cache. This offers much improved hit rates as compared
to the 8K direct-mapped instruction cache used in the
Alpha 21164.

2.1 Line and Set Prediction
The 21264 instruction cache implements two-way

associativity via a line and set prediction technique that
combines the speed advantage of a direct-mapped cache
with the lower miss ratio of a two-way set-associative
cache. Each fetch block of four instructions includes a
line and set prediction. This prediction indicates where to
fetch the next block of four instructions from, including
which set (i.e. which of the two choices allowed by two-
way associative cache) should be used. These predictors
are loaded on cache fill and dynamically re-trained when
they are in error. The mispredict cost is typically a single-
cycle bubble to re-fetch the needed data. Line and set
prediction is an important speed enhancement since the
mispredict cost is so low and the line/set mispredictions
are rare (the hit rates are typically 85% or higher in
simulated applications/benchmarks).

In addition to the speed benefits of direct cache
access, there are other benefits that come from line and
set prediction. For example, frequently encountered
predictable branches, such as loop terminators, will avoid
the mis-fetch penalty often associated with a taken
branch. The 21264 also trains the line predictor with the
address of jumps that use direct register addressing. Code
using DLL (dynamically linked library) routines will
benefit after the line predictor is trained with the target.

The 21264 line predictor does not train on every
mispredict. There is a 2-bit hysteresis associated with
each line that only enables training after the predictor has
been in error several times recently. This avoids some
unnecessary training and misprediction

2.2 Branch Prediction
Another important contributor to fetch efficiency is

branch prediction. The 21264 speculative execution
capabilities make branch prediction a more important
contributor to overall performance than with previous
microprocessor generations. Studies show that branch
pattern behavior sometimes correlates with the execution
of a single branch at a unique PC location (i.e. local
history), and pattern behavior sometimes correlates with
execution of all previous branches (i.e. global history).
Both correlation techniques are needed to extract the
maximum branch prediction efficiency.

The 21264 implements a sophisticated tournament
branch prediction scheme that dynamically chooses
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between local and global history to predict the direction
of a given branch [McF93]. The result is a branch
predictor that produces a better prediction accuracy than
larger tables of either individual method, 90-100% on
most simulated applications/benchmarks.

Figure 2 shows the structure of the 21264 tournament
branch predictor. The local history table holds 10 bits of
branch history for up to 1024 branches, indexed by the
instruction address. The 21264 uses the 10-bit local
history to pick from one of 1024 prediction counters. The
local prediction is the most-significant bit of the
prediction counter. After branches issue and retire the
21264 inserts the true branch direction in the local history
table and updates the referenced counter (using saturating
addition) to train the correct prediction.

The local prediction will be very useful, for example,
with an alternating taken/not-taken sequence from a given
branch. The local history of the branch will eventually
resolve to either 1010101010 or 0101010101 (the
alternating pattern of zeroes and ones indicates the
success/failure of the branch on alternate invocations). As
the branch executes multiple times, it will saturate the
prediction counters corresponding to these local history
values and make the prediction correct. Any repeating
pattern of 10 branch invocations can be trained this way.

The global predictor is a 4096 entry table of two-bit
saturating counters that is indexed by the global, or path,
history of the last twelve branches. The prediction is the
most-significant bit of the indexed prediction counter.
Global history is useful when the outcome of a branch can
be inferred from the direction of previous branches. For
example, if a first branch that checks for a value equal to
ten succeeds, a second branch that checks for the same
value to be even must also always succeed. The global

history predictor can learn this pattern with repeated
invocations of the two branches; eventually, the global
prediction counters with indices that have their lower-
most bit set (indicating that the last branch was taken) will
saturate at the correct value. The 21264 maintains global
history with a silo of thirteen branch predictions and the
4096 prediction counters. The silo is backed up and
corrected on a mispredict. The 21264 updates the
referenced global prediction counter when the branch
retires.

The 21264 updates the chooser when a branch
instruction retires, just like the local and global prediction
information. The chooser array is 4096 two-bit saturating
counters. If the predictions of the local and global
predictor differ, the 21264 updates the selected choice
prediction entry to support the correct predictor.

The instruction fetcher forwards speculative
instructions from the predicted path to the execution core
after a branch prediction. The 21264 can speculate
through up to 20 branches.

3 Register Renaming and Out-of-
Order Issue

The 21264 offers out-of-order efficiencies with much
higher clock speeds than competing designs. This speed,
however, is not accomplished by the restriction of
dynamic execution capabilities. The out-of-order issue
logic in the 21264 receives four fetched instructions every
cycle, renames/re-maps the registers to avoid unnecessary
register dependencies, and queues the instructions until
operands and/or functional units become available. It
dynamically issues up to six instructions every cycle -
four integer instructions and two floating-point
instructions.

3.1 Register Renaming
Register renaming assigns a unique storage location

with each write-reference to a register. The 21264
speculatively allocates a register to each register-result-
producing instruction. The register only becomes part of
the architectural register state when the instruction
commits/retires. This allows the instruction to
speculatively issue and deposit its result into the register
file before the instruction is committed. Register
renaming also eliminates write-after-write and write-after-
read register dependencies, but preserves all the read-
after-write register dependencies that are necessary for
correct computation. Renaming extracts the maximum
parallelism from an application since only necessary
dependencies are retained and speculative execution is
allowed in the instruction flow.

In addition to the 64 architectural (i.e. software-
visible) registers, up to 41 integer and 41 floating point
registers are available to hold speculative results prior to

Path History

Program
Counter

Local
History
Table

(1024 x 10)

Global Prediction
(4096x2)

Choice Prediction
(4096x2)

Local
P

rediction
(1024x3)

Branch
Predicton

Figure 2 The 21264 Tournament Branch
Predictor

This figure is a block-diagram of the 21264
branch predictor. The local prediction path is on
the left. The global prediction path and the
chooser are on the right.



instruction retirement in a large 80 instruction in-flight
window. This implies that up to 80 instructions can be in
partial states of completion at any time, allowing for
significant execution concurrency and latency hiding.
(Particularly since the memory system can track an
additional 32 in-flight loads and 32 in-flight stores.) The
21264 tracks outstanding unretired instructions (and their
associated register map information) so that the machine
architectural state can be preserved in the case of a mis-
speculation.

3.2 Out-of-Order Issue Queues
The issue queue logic maintains a list of pending

instructions. Each cycle the separate integer and floating-
point queues select from these instructions as they
become data-ready using register scoreboards based on
the renamed register numbers. These scoreboards
maintain the status of the renamed registers by tracking
the progress of single-cycle, multiple-cycle, and variable
cycle (i.e. memory load) instructions. When functional
unit or load data results become available, the scoreboard
unit notifies all instructions in the queue that require the
register value. These dependent instructions can issue as
soon as the bypass result becomes available from the
functional unit or load. Each queue selects the oldest data-
ready and functional-unit-ready instructions for execution
each cycle. The 20-entry integer queue can issue four
instructions, and the 15-entry floating-point queue can
issue two instructions per cycle.

The 21264 cannot schedule each instruction to any of
the four integer execution pipes. Rather, it statically
assigns instructions to two of the four pipes, either upper
or lower, before they enter the queue. The issue queue has
two arbiters that dynamically issue the oldest two queued
instructions each cycle within the upper and lower pipes,
respectively. This static assignment to upper/lower fits
well with the integer execution engine - some functional
units do not exist in both the upper and lower pipelines,
and the dynamic scheduling of the issue queue minimizes
cross-cluster delays. Section 4 discusses this more.

The queues issue instructions speculatively. Since
older instructions are given priority over newer
instructions in the queue, speculative issues do not slow
down older, less speculative issues. The queue is
collapsing – an entry becomes immediately available once
the instruction issues or is squashed due to mis-
speculation.

4 Execution Engine
To support the high frequency goals of the project, the

design of the integer register file was a particular
challenge. Typically, all execution units require access to
the register file, making it a single point of access and a
potential bottleneck to processor performance. With as
many as fourteen ports necessary to support four

simultaneous instructions in addition to two outstanding
load operations, it was clear that the register file would be
large and an implementation challenge. Instead, the 21264
splits the file into two clusters that contain duplicates of
the 80-entry register file. Two pipes access a single
register file to form a cluster, and the two clusters are
combined to support 4-way integer instruction execution.

The incremental cost of this design is an additional
cycle of latency to broadcast results from each integer
cluster to the other cluster. Performance simulation shows
this cost to be small – a few percent or less performance
difference from an idealized un-clustered implementation
with most applications. The integer issue queue
dynamically schedules instructions to minimize the one
cycle cross-cluster communication cost; An instruction
can usually first issue on the same cluster that produces
the result. This architecture provides much of the
implementation simplicity and lower risk of a two-issue
machine with the performance benefits of four-way
integer issue. There are two floating-point execution pipes
organized in a single cluster with a single 72-entry
register file. Figure 3 shows the configuration.

The 21264 includes new functionality not present in
prior Alpha microprocessors: a fully-pipelined integer
multiply unit, an integer population count and
leading/trailing zero count unit, a floating-point square-
root functional unit, and instructions to move register
values directly between floating-point and integer
registers. It also provides more complete hardware
support for the IEEE floating-point standard, including
precise exceptions, NaN and infinity processing, and
support for flushing denormal results to zero.
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two floating-point pipes in the 21264, together
with the functional units in each.



5 Memory System
The memory system in the 21264 is high-bandwidth,

supporting many in-flight memory references and out-of-
order operation. It receives up to two memory operations
(loads or stores) from the integer execution pipes every
cycle. This means that the on-chip 64 KB two-way set-
associative data cache is referenced twice every cycle,
delivering 16 bytes every cycle. In effect, the data cache
operates at twice the frequency of the processor clock.
Since the cache is double-pumped this way there is full
support for two memory references every cycle without
conflict. The off-chip (level-two) cache provides a very
fast backup store for the primary caches. This cache is
direct-mapped, shared by both instructions and data, and
can range from 1 to 16 MB. The off-chip clock-forwarded
cache interface can support a peak data transfer rate of 16
bytes every 1.5 CPU cycles.

The latency of the virtual-indexed on-chip data cache
is three cycles for integer loads and four cycles for
floating-point loads. The latency to the physical-indexed
off-chip cache is twelve cycles, depending on the speed of
the cache. The 21264 supports many SRAM variants,
including late-write synchronous, PC-style, and dual-data
for very high frequency operation.

The 21264 also has a fast interface that allows the
memory system surrounding the microprocessor to
provide data quickly, typically from DRAM, upon a cache
miss. The peak bandwidth of the clock-forwarded system
interface is 8 bytes of data per 1.5 CPU cycles.

The 21264 memory system supports up to 32 in-flight
loads, 32 in-flight stores, 8 in-flight (64-byte) cache block
fills, and 8 cache victims. This allows a high degree of
memory system parallel activity to the cache and system
interface. It translates into high memory system
performance, even with many cache misses. For example,
we have measured a 1 GB/sec sustained memory
bandwidth on the STREAMS benchmark [Str98].

5.1 Store/Load Memory Ordering
The 21264 memory system supports the full

capabilities of the out-of-order execution core, yet
maintains an in-order architectural memory model. This is
a challenge, for example, when there are multiple loads
and stores that reference the same address. It would be
incorrect if a later load issued prior to an earlier store and,
thus, did not return the value of the earlier store to the
same address. This is a somewhat infrequent event, but it
must be handled correctly. Unfortunately, the register
rename logic cannot automatically handle this read-after-
write memory dependency as it does other register
dependencies because it does not know the memory
address before the instruction issues. Instead, the memory
system dynamically detects the problem case after the
instructions issue (and the addresses are available).

The 21264 has hazard detection logic to recover from
a mis-speculation that allowes a load to incorrectly issue
before an earlier store to the same address. After the first
time a load mis-speculates in this way, the 21264 trains
the out-of-order execution core to avoid it on subsequent
executions of the same load. It does this by setting a bit in
a load wait table that is examined at fetch time. If the bit
is set, the 21264 forces the issue point of the load to be
delayed until all prior stores have issued, thereby avoiding
all possible store/load order violations. This load wait
table is periodically cleared to avoid unnecessary waits.

This example store/load order case shows how the
21264 memory system produces a result that is the same
as in-order memory system execution while utilizing the
performance advantages of out-of-order execution.
Almost all of the major 21264 functional blocks are
needed to implement this store/load order solution: fetch,
issue queue, and memory system. This implementation
provides the highest performance for the normal case
when there are no dependencies since loads can be issued
ahead of earlier stores. It also dynamically adjusts to
perform well in the less frequent case where a load should
not be scheduled before a prior store.

5.2 Load Hit / Miss Prediction
There are mini-speculations within the 21264

speculative execution pipeline. In order to achieve the
three-cycle integer load hit latency, it is necessary to
speculatively issue consumers of integer load data before
knowing if the load hit or missed in the on-chip data
cache. The consumers that receive bypassed data from a
load must issue the same cycle as the load reads the data
cache tags, so it is impossible for the load hit/miss
indication to stop the issue of the consumers.
Furthermore, it really takes another cycle after the data
cache tag lookup to get the hit/miss indication to the issue
queue. This means that consumers of the results produced
by the consumers of the load data can also speculatively
issue – even though the load may have actually missed!

The 21264 could rely on the general mechanisms
available in the speculative execution engine to abort the
speculatively executed consumers of the integer load data,
but that requires a restart of the entire instruction pipeline.
Given that load misses can be frequent in some
applications, this technique would be too expensive.
Instead, the 21264 has a mini-restart to handle this case.
When consumers speculatively issue three cycles after a
load that misses, two integer issue cycles (on all four
integer pipes) are squashed and all integer instructions
that issued during those two cycles are pulled back into
the issue queue to be re-issued later. This means that both
the consumer of the load data and the consumer of the
consumer will be restarted and re-issued.

While this two-cycle window is less costly than a full
restart of the processor pipeline, it still can be expensive



for applications that have many integer load misses.
Consequently, the 21264 predicts when loads will miss
and does not speculatively issue the consumers of the load
data in that case. The effective load latency is five cycles
rather than the minimum three for an integer load hit that
is (incorrectly) predicted to miss.

The 21264 load hit/miss predictor is the most-
significant bit of a 4-bit counter that tracks the hit/miss
behavior of recent loads. The saturating counter
decrements by two on cycles when there is a load miss,
otherwise it increments by one when there is a hit.

The 21264 treats floating-point loads differently than
integer loads for load hit/miss prediction. Their latency is
four cycles and there are no single-cycle operations, so
there is enough time to resolve the exact instruction that
used the load result.

5.3 Cache Prefetching / Management
The 21264 provides cache prefetch instructions that

allow the compiler and/or assembly programmer to take
full advantage of the parallelism and high-bandwidth
capabilities of the memory system. These prefetches are
particularly useful in applications that have loops that
reference large arrays. In these and other cases where
software can predict memory references, it can prefetch
the associated (64-byte) cache blocks to overlap the cache
miss time with other operations. Software prefetches can
also eliminate unnecessary data reads, and control cache-
ability. The prefetch can be scheduled far in advance
because the block is held in the cache until it is used.

Table 1 describes the cache prefetch and management
instructions used in the 21264. The normal, modify-intent,
and evict-next prefetches perform similar operations but
are used in different specific circumstances. For each of
them, the 21264 fills the block into the data cache if it
was not already present in the cache. The write-hint 64
instruction is similar to a prefetch with modify intent
except that the previous value of the block is not loaded.
For example, this is very useful for zeroing out a
contiguous region of memory. The evict instruction evicts
the selected cache block from the cache.

6 Performance
We have currently measured performance levels of 30

Specint95 and 50 Specfp95 on early 21264 systems.
These performance levels clearly place the 21264 as the
highest-performer in the industry. System tuning, new
system designs, compiler tuning, and faster 21264
variants will continue to increase the performance lead.

7 Conclusion
The 21264 is the fastest microprocessor available. It

reaches excellent performance levels using a combination
of the expected high Alpha clock speeds together with
many advanced micro-architectural techniques, including
out-of-order and speculative execution with many in-
flight instructions. The 21264 also includes a high-
bandwidth memory system to quickly deliver data values
to the execution core, providing robust performance for
many applications, including those without cache locality.
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Instruct. Description

Normal
Prefetch

The 21264 fetches the (64-byte) block into
the (level one data and level 2) cache.

Prefetch
with
Modify
Intent

The same as the normal prefetch except
that the block is loaded into the cache in
dirty state so that subsequent stores can
immediately update the block.

Prefetch
and
Evict
Next

The same as the normal prefetch except
that the block will be evicted from the
(level one) data cache as soon as there is
another block loaded at the same cache
index.

Write
Hint 64

The 21264 obtains write access to the 64-
byte block without reading the old contents
of the block. The application typically
intends to over-write the entire contents of
the block.

Evict
The cache block is evicted from the
caches.

Table 1 The 21264 Cache Prefetch and
Management Instructions


