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Neural network simulations often spend a large proportion of their time

computing exponential functions. Since the exponentiation routines of

typical math libraries are rather slow, their replacement with a fast ap-

proximation can greatly reduce the overall computation time. This article

describes how exponentiation can be approximated by manipulating the

components of a standard (IEEE-754) �oating-point representation. This

models the exponential function as well as a lookup table with linear

interpolation, but is signi�cantly faster and more compact.

1 Motivation

Exponentiation is arguably the quintessential nonlinear function of neural
computation. Among other uses, it is needed to compute most of the activa-
tion functions and probability distributions used in neural network models.
Consequently, much of the time in neural simulations is actually spent on
exponentiation.

The exp functions providedby typical computer math libraries are highly
accurate but rather slow. An approximation is perfectly adequate for most
neural computation purposes and can save much time. In recognition of this,
many neural network software packages approximate exp with a lookup
table, typically with linear interpolation. There is, however, an even faster
and highly compact way to obtain comparable approximation quality.

2 The Algorithm

Floating-point numbers are typically represented on computers in the form
(¡1)s (1 C m) 2x¡x0 , where s is the sign bit, m the mantissa—a binary fraction
in the range [0, 1)—and x the exponent, shifted by a constant bias x0. The
widely used IEEE-754 standard (IEEE, 1985) speci�es a 52-bit mantissa and
an 11-bit exponent with bias x0 D 1023, laid out in 8 bytes of computer
memory, as shown in Figure 1 (top row). The components of this represen-
tation may be manipulated by accessing the same memory location as a pair
of 4-byte integers (denoted i and j here). In particular, any integer written
directly to the x component (via i) will be exponentiated when the same
memory location is read back in �oating-point format. This is the key idea
behind the fast exponentiation macro proposed here.
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Figure 1: Bit representation of the union data structure used by the EXP macro.
The same 8 bytes can be accessed either as an IEEE-754 double (top row) with
sign s, exponent x, and mantissa m, or as two 4-byte integers i and j (bottom).

Since the x component resides in the higher-order bits of i, an integer y
to be exponentiated must be left-shifted by 20 bits, after the bias x0 has been
added. Thus i :D 220 (yC1023) computes 2y for integer y. Now consider what
happens for noninteger arguments: After multiplication, the fractional part
of y will spill over into the highest-order bits of the mantissa m. This spillover
is not only harmless, but in fact is highly desirable—under the IEEE-754
format, it amounts to a linear interpolation between neighboring integer
exponents. The technique therefore exponentiates real-valued arguments
as well as a lookup table with 211 entries and linear interpolation.

Finally, to compute ey rather than 2y, y must be divided by ln(2) �rst. The
complete transformation of y necessary to compute a fast approximation to
ey in the IEEE-754 format is given by

i :D a y C (b ¡ c) (2.1)

where a D 220
/ ln(2), b D 1023 ¢ 220, and c is an adjustment parameter that

affords some control over the properties of the approximation (see section 4).
Figure 2 shows C code implementing this method. The LITTLE ENDIAN

�ag is necessary since computers differ in how they store multibyte quanti-
ties in memory. The simplest way to determine whether it should be set on a
given machine is to try both alternatives. The union data structure should
be declared static to ensure that j (which is never used by the macro)
is initialized to zero, as well as to avoid name clashes when this code is
included in multiple source modules, for example, from a common header
�le.

For integer arguments y, a signi�cant additional speedup (see Table 1)
can be obtained at little cost in accuracy by setting EXP A and EXP C to
integer values, so that the EXP macro need not perform any �oating-point
arithmetic at all. This trick can be used in conjunction with noninteger quan-
tizations as well: By premultiplying EXP A with the (real-valued) quantum
q, then rounding to integer, one obtains a macro that approximates eyq for
integer y, using only integer arithmetic. However, in our experience, casting
inherently real-valued arguments to integer in order to exploit this feature
is generally not a good idea, since type conversion from �oating point to
integer tends to be a comparatively expensive operation.
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#include <math.h>

static union

[

double d;

struct

[

#ifdef LITTLEÇENDIAN

int j, i;

#else

int i, j;

#endif

] n;

] Çeco;

#define EXPÇA (1048576/MÇLN2) /* use 1512775 for integer version */

#define EXPÇC 60801 /* see text for choice of c values */

#define EXP(y) (Çeco.n.i = EXPÇA*(y) + (1072693248 - EXPÇC), Çeco.d)

Figure 2: C code implementing the union data structure and EXP macro for fast
approximate exponentiation. LITTLE ENDIAN must bede�ned for machines that
store integers with the least signi�cant byte �rst; EXP C is set to the desired value
of the c parameter (see section 4).

Table 1: Seconds Required for 108 Exponentiations on a Variety of Workstations.

Manufacturer Intel SGI Sun DEC
Processor Pentium MIPS UltraSparc Alpha server

Model/Speed Pro/240 4600SG 1/170 2100A/300

LITTLE ENDIAN Yes No No Yes
Op. System Linux 2.0.29 Irix 5.3 SunOS 5.5.1 OSF1 4.0
Compiler gcc 2.7.2.1 /bin/cc gcc 2.7.2.1 DEC C 5.2

Optimization -O2 -O4 -O2 -fast

exp (libm.a) 89 126 166 28
Lookup table 46 62 22 23
EXP macro 28 25 7.6 4.2
EXP (integers) 6.2 6.8 3.7 -0.6

3 Benchmark Results

Table 1 lists the benchmark results obtained on a variety of machines for the
standard math library’s exp function, a lookup table with linear interpola-
tion, and the EXP macro in its general (�oating-point) and integer forms. The
benchmark program was required to return the sum of 108 exponentials of
pseudorandom arguments so as to prevent “optimizing away” of any expo-
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nentiation by the compiler. On each machine, the time taken to calculate just
the sum of the 108 pseudorandom arguments was subtracted to obtain net
computing times for the exponentiation. To check for variation in the CPU
time consumed, each benchmark was run three times. The �gures shown in
Table 1 are averages over these three runs; the observed �uctuations were
very small.

The results show that the EXP macro is clearly the fastest on all machines
tested. For �oating-point arguments it requires between 18% (DEC Alpha)
and 60% (Intel Pentium Pro) of the time needed by the lookup table. Not
surprisingly, the standard math library’s exp routines follow far behind.
The -fast optimization switch on the DEC Alpha activates an approximate
exp routine that is only slightly slower than a lookup table, but the other
machines do not have such a feature. Performance on the Sun workstation
in particular suffers from an exp function that is almost 22 times slower
than the EXP macro.

This discrepancy grows to an impressive 45-fold speed advantage for
the integer form of the macro. The integer variant is signi�cantly faster than
the general (�oating-point) form of EXP on all tested machines. On the DEC
Alpha, it appears to be even faster than light, taking negative time! Recall,
though, that these �gures denote net computing times, from which the time
taken by a control—the same program with the exponentiation removed—
has been subtracted. In this case, the integer EXP macro was on average 6
nanoseconds faster than the integer to �oating-point type conversion that
takes place instead in the control program. Although not as impressive as
violating basic laws of physics, this still testi�es to a rather astonishing
speed.

In summary, these benchmark results indicate that the EXP macro could
greatly accelerate computations that make heavyuseof exponentiation.1 It is
both faster and morecompact than a lookup tablewith linear interpolation,a
widelyused acceleration method.Finally, its speed is evengreater for integer
arguments, as occur, for example, in the calculation of the Boltzmann-Gibbs
distribution for quantized energy levels.

4 Approximation Properties

Computing EXP(y) is very fast, but how well does it approximate ey? Figure 3
shows the logistic function implemented using the EXP macro versus the
standard math library’s exp function. The left panel illustrates that on a
global scale, the two are all but indistinguishable. The greater magni�cation
in the center panel highlights the linear interpolation performed by EXP

1 To give an example, Lazzaro and Wawrzynek’s (1999) neural network-based JPEG
quality transcoder runs twice as fast when using the EXP macro (Lazzaro, personal com-
munication).
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Figure 3: Comparison of the logistic function y 7! (1 C e¡y )¡1 implemented
using the EXP macro (solid line, for c D 60,801) versus the math library’s exp

function (dashed line). Different scales highlight the global �t (left), the linear
interpolation (center), and the staircase effect (right).

due to the limited precision of the 11-bit exponent x. Finally, the highly
magni�ed right-hand panel of Figure 3 shows that on the very small scale
of Dy D 2¡20, EXP(y) exhibits a staircase structure. This happens because
the macro completely ignores the lower part j of the mantissa, leaving it at
zero—the value to which static variables in C are initialized—for reasons of
ef�ciency.

Versions of EXP that use 8-byte (long long) integers do not suffer from
this staircase effect, but were found to be unacceptably slow on the typical
workstation platforms. As it stands, EXP(y) is thus monotonically nonde-
creasing but (unlike ey) not monotonically increasing. Although this should
be kept in mind when writing code that uses the EXP macro, in practice it
should not present any dif�culties.

The c parameter in equation 2.1 permits some �ne-tuning of the ap-
proximation for certain desirable characteristics. For c D 0, the EXP macro
interpolates between 211 points that lie exactly on the exponential func-
tion: EXP(n ln 2) D en ln 2 D 2n for all integer n. Due to the staircase effect,
however, an upper bound on the exponential (8y EXP(y) ¸ ey) requires
c · ¡1. Positive values of c right-shift EXP(y); a lower bound on ey is
returned for c ¸ 90,253. (Mathematical derivations for these values are
presented in the appendix.) If tight bounds are required on both sides, a
particularly ef�cient way to compute them for a given argument is to call
the macro

#define EXPÇL (Çeco.n.i -= 90254, Çeco.d),

which returns the lower bound, right after computing the upper bound by
a call to EXP (with EXP C set to –1). Intermediate values of c produce the
best overall approximations: the maximum relative error (to either side of
ey) is smallest for c ¼ 45,799, the minimum root-mean-square (RMS) rela-
tive error is reached at c ¼ 60,801, and the mean relative error is lowest at
c ¼ 68,243.(See the appendix.)
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Table 2: Relative Error of the EXP Macro for Various Choices of the c Parameter.

Relative Error: Max. < ey : Max. > ey: Root Mean Square: Mean:

c ´ c¢ln(2)/220 (1 ¡ e¡c ) (2 e¡(c C1)
/ ln(2)¡1) (

p

Y(c )) (W(c ))

c D ¡1 0.000 % 6.148 % 4.466 % 4.069 %
c D 45,799 2.982 D 2.982 2.031 1.811
c D 60,801 3.939 1.966 1.770 1.522
c D 68,243 4.411 1.466 1.837 1.483
c D 90,253 5.792 0.000 2.617 1.959

Table 2 lists the maximum (below and above ey), RMS, and mean relative
error of EXP for each of the above settings of c, with optimal error values
italicized. These values have been measured empirically; they are in perfect
agreement with the analytically derived formulas shown in the column
headings, which stem from equations A.7, A.8, and A.12.

5 Limitations

The EXP macro proposed here provides a very fast, reasonably accurate
approximationof the exponential function. Nevertheless, its speed isbought
at a price:

� It requires 4-byte integers and IEEE-754-compliant �oating-point data
types. (These are available in most computing environments.)

� Its implementation depends on the byte order of the machine.

� Its use of a global static variable is problematic in multithreaded en-
vironments. (Each thread must have a private copy of the eco data
structure.)

� There is no over�ow or error handling. The user must ensure that the
argument is in the valid range (roughly, ¡700 to 700).

� It only approximates the exponential function (see section 4). Certain
numerical methods may amplify the approximation error; each algo-
rithm to use EXP should therefore be tested against the original version
�rst.

In situations where these limitations are acceptable, the EXP macro
promises to speed up the computation of exponentials greatly.
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Appendix: Mathematical Analysis

Ignoring the staircase effect shown in Figure 3 (right), the EXP macro can be
described as

EXP(y C c ) D 2k(1 C y / ln(2) ¡ k) , where k ´ b y/ ln(2)c , (A.1)

where c ´ c ¢ ln(2) /220 , and buc denotes the largest integer · u. In what
follows, various values of c are derived for which equation A.1 has certain
desirable properties.

A.1 Upper and Lower Bound. The exponential inequality states that:

2a · 1 C a 8 a 2 [0, 1]

2y/ ln(2)¡k
· 1 C y / ln(2) ¡ k

ey
· EXP(y C c ). (A.2)

For c · 0 this implies ey · EXP(y). The corresponding bound on c must be
decremented by 1 on account of the staircase effect; the EXP macro hence
returns an upper bound to the exponential function for c · ¡1.

To determine the smallest value of c for which EXP(y) delivers a lower
bound to ey, match the two functions’ �rst derivatives:

@

@ y
eyCc

D
@

@ y
EXP(y C c )

eyCc
D 2k

/ ln(2)

y C c D k ln(2) ¡ ln(ln(2))

y / ln(2) ¡ k D ¡ [ ln(ln(2)) C c ] / ln(2). (A.3)

Then compare function values at the points characterized by equation A.3:

eyCc ¸ EXP(y C c )

2k
/ ln(2) ¸ 2k (1 C y / ln(2) ¡ k)

1 ¸ ln(2) ¡ [ ln(ln(2)) C c ]

c ¸ 220 [ 1 ¡ [ ln(ln(2)) C 1] / ln(2)] ¼ 90,252.34. (A.4)

Rounding up to preserve the bound yields the best integer value of c D

90,253.

A.2 Lowest Maximum Relative Error.. For intermediate values of c,
EXP dips both above and below the exponential function. The relative error
is greatest at the extrema of

rc (y) ´ 1 ¡ EXP(y C c ) /e
yCc . (A.5)
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Setting its derivative to zero,

@

@ y
rc (y) D

2k(1 C y / ln(2) ¡ k) ¡ 2k
/ ln(2)

eyCc
D 0

y D (k ¡ 1) ln(2) C 1, (A.6)

yields the local minima of rc (y). The local maxima can be found at the points
where EXP is not differentiable, that is, at y D k ln(2). The maximum relative
error is lowest when the magnitude of rc (y) is equal at both sets of extrema:

| rc [k ln(2)]| D | rc [(k ¡ 1) ln(2) C 1]|

1 ¡ e¡c
D 2 e¡(c C1)

/ ln(2) ¡ 1

c D ln(ln(2) C 2 /e) ¡ ln(2) ¡ ln(ln(2))

c D c ¢ 220
/ ln(2) ¼ 45,799.12 (A.7)

The staircase effect can be adjusted for by subtracting 0.5 from this value;

the best integer choice is c D 45,799.

A.3 Lowest RMS Relative Error. To compute the value of c that mini-
mizes the RMS relative error, consider the integrated squared relative error
Y:

Y(c ) ´
1

2n ln(2)

Z n ln(2)

¡n ln(2)
rc (y)2dy

D
1

2n ln(2)

n¡1
X

iD¡n

Z (iC1) ln(2)

i ln(2)

³

1 ¡
2i [ 1 C y / ln(2) ¡ i ]

e yCc

´2

dy

D ¢ ¢ ¢ D 1 C
3 C 4 (1 ¡ 4 ec ) ln(2)

16 e2c ln(2)3
. (A.8)

Setting the derivative of Y to zero gives:

@

@c
Y(c ) D

4 (2 ec ¡ 1) ln(2) ¡ 3

8 e2c ln(2)3
D 0

2 ec ¡ 1 D
3

4 ln(2)

c D 220 ln

³

3

8 ln(2)
C

1

2

´

/ ln(2) ¼ 60,801.48. (A.9)

Again 0.5 must be subtracted to compensate for the staircase effect; the best
integer value is c D 60,801.
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A.4 Lowest Mean Relative Error.. The points at which EXP intersects
the exponential function are given by

eyCc
D EXP(y C c )

eyec
D 2k (1 C y/ ln(2) ¡ k)

¡ec ln(2) /2 D [ k ln(2) ¡ y ¡ ln(2)] ek ln(2)¡y¡ln(2)

W(¡ec ln(2) /2) D k ln(2) ¡ y ¡ ln(2)

y / ln(2) ¡ k D ¡W(¡ec ln(2) /2) / ln(2) ¡ 1, (A.10)

where W denotes Lambert’s function (Fritsch, Shafer, & Crowley, 1973; Cor-
less, Gonnet, Hare, & Jeffrey, 1993; Corless, Gonnet, Hare, Jeffrey, & Knuth,

1996),2 which satis�es W(u) eW(u)
D u. Each linear segment of EXP crosses

the exponential at two points, r C and r¡, given by the two real-valued
branches, W0 and W¡1, of Lambert’s function:

r C |¡ ´ ¡W0 |¡1(z) / ln(2) ¡ 1 , where z ´ ¡ec ln(2) /2. (A.11)

The mean relative error W as a function of c can be computed by splitting
the integral over the relative error | rc (y) | at the crossover points r C |¡:

W(c ) ´
1

2n ln(2)

Z n ln(2)

¡n ln(2)
| rc (y)| dy

D
1

2n ln(2)

n¡1
X

iD¡n

2

4

Z

(iCrC ) ln(2)

i ln(2)

rc (y) dy ¡

Z

(iCr¡ ) ln(2)

(iCrC ) ln(2)

rc (y) dy C

Z

(iC1) ln(2)

(iCr¡ ) ln(2)

rc (y) dy

3

5

D ¢ ¢ ¢ D 1C
2

ln(2)

µ

W¡1(z)2 C 1

W¡1(z)
¡

W0(z)2 C 1

W0(z)

¶

¡
e¡c

2 ln(2)2
. (A.12)

Setting the derivative of W to zero gives

@

@c
W (c ) D 4 ln(2) [W¡1(z) ¡ W0(z)] C e¡c W¡1(z)W0(z) D 0

e¡c
D 4 ln(2)

µ

1

W¡1(z)
¡

1

W0(z)

¶

1 /8 D eW0 (z)
¡ eW¡1 (z). (A.13)

Now set ºC |¡ ´ eW0 |¡1 (z). By de�nition, W(z) eW(z)
D z for all branches of W,

so z D ºC ln(ºC ) D º¡ ln(º¡). In conjunction with equation A.13, this yields

º D (º C 1 /8) ln(º C 1/8) / ln(º), (A.14)

2I have written Octave/Matlab code that evaluates any branch of Lambert’s W function
for complex arguments. It is available on the Internet at: ftp://ftp.idsia.ch/pub/nic/W.m.
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which can be solved numerically by iterating over equation A.14 from a
suitable starting point 0 < º0 < 7 /8. The result is

º ¼ 0.3071517227

z D º ln(º) ¼ ¡0.362566022

c D ln(¡2 z) ¡ ln(ln(2)) ¼ 0.045111411

c D c ¢ 220
/ ln(2) ¼ 68,243.43. (A.15)

With the usual subtraction of 0.5 on account of the staircase effect, the best
integer value is c D 68,243.
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