How To Write Fast Numerical Code:
A Small Introduction

Srinivas Chellappa, Franz Franchetti, and Markiisdpel

Electrical and Computer Engineering
Carnegie Mellon University
{schellap, franzf, pueschel }@ece.cmu.edu

Abstract. The complexity of modern computing platforms has made it ex-
tremely difficult to write numerical code that achieves the best possibferpe
mance. Straightforward implementations based on algorithms that miningze th
operations count often fall short in performance by at least oner @dmagni-
tude. This tutorial introduces the reader to a set of general technigiraprave

the performance of numerical code, focusing on optimizations foragh®ater’s
memory hierarchy. Further, program generators are discussadway to re-
duce the implementation and optimization effort. Two running examplessagk u

to demonstrate these techniques: matrix-matrix multiplication and the discrete
Fourier transform.

1 Introduction

The growth in the performance of computing platforms in tlstgdew decades has
followed a reliable pattern usually referred to as Mooresnv Moore observed in

1965 [1] that the number of transistors per chip roughly desilevery 18 months and
predicted—correctly—that this trend would continue. In flatadue to the shrinking

size of transistors, CPU frequencies could be increasexighty the same exponential
rate. This trend has been the big supporter for many perfocendemanding applica-
tions in scientific computing (such as climate modeling atiéophysics simulations),
consumer computing (such as audio, image, and video priag¢sand embedded com-
puting (such as control, communication, and signal praegssn fact, these domains
have a practically unlimited need for performance (for egbanthe ever growing need
for higher resolution videos), and it seems that the evatutif computers is well on

track to support these needs.

However, everything comes at a price, and in this case itdsrtbreasing difficulty of
writing the fastest possible software. In this tutorial, fweus onnumericalsoftware.
By that we mean code that mainly consists of floating point matations.

The problem. To understand the problem we investigate Fig. 1, which cmsivarious
Intel architectures from the first Pentium to the (at the tohthis writing) latest Core2
Extreme. Ther-axis shows the year of release. Tjraxis, in log-scale, shows both the
CPU frequency (in MHz) and the single/double precision tatcal peak performance
(in Mflop/s = Mega FLoating point OPerations per Second) efréspective machines.



First we note, as explained above, the exponential incieaS@U frequency. This re-
sults in a “free” speedup for numerical software. In otherdgolegacy code written for
an obsolete predecessor will run faster without any exigramming effort. However,
the theoretical performance of computers has evolved atarfpace due to increases in
the processors’ parallelism. This parallelism comes irsgE\forms, including pipelin-
ing, superscalar processing, vector processing and thudtading. Single-instruction
multiple-data (SIMD) vector instructions enable the exeguof an operation on 2, 4,
or more data elements in parallel. The latest generationslap “multicore,” which
means 2, 4, or more processing coresist on a single chip. Exploiting parallelism in
numerical software is not trivial, it requires implemeidateffort. Legacy code typ-
ically neither includes vector instructions, nor is it nintlireaded to take advantage
of multiple processor cores or multiple processors. Igeattmpilers would take care
of this problem by automatically vectorizing and parafizlg existing source code.
However, while much outstanding compiler research haslksththese problems (e.g.,
[2-4]), they are in general still unsolved. Experience shivat this is particularly true
for numerical problems. The reason is, for numerical proisletaking advantage of the
platform’s available parallelism often requires an altfori structured differently than
the one that would be used in the corresponding sequentild. d@ompilers cannot
be made to change or restructure algorithms since doinggaires knowledge of the
algorithm domain.

Similar problems are caused by the computer's memory hieyaindependently of
the available parallelism. The fast processor speeds hade fhincreasingly difficult
to “feed all floating point execution units” at the necessaate to keep them busy.
Moving data from and to memory has become the bottleneck.nfdmmory hierarchy,
consisting of registers and multiple levels of cache, aoraidress this problem, but can
only work if data is accessed in a suitable order. One cachkse may incur a penalty of
20-100s CPU cycles, a time in which 100 or more floating pgietrations could have
been performed. Again, compilers are inherently limitedptimizing for the memory
hierarchy since optimization may require algorithm restinting or an entirely different
choice of algorithm to begin with.

Adding to these problems is the fact that CPU frequencysgadi approaching its end
due to limits to the chip’s possible power density (see Figsihce 2004 it has hovered
around 3 GHz. This impliethe end of automatic speedupiture performance gains
will be exclusively due to increasing parallelism.

In summary, two main problems can be identified from Fig. 1:

— Years of exponential increase in CPU frequency meant freedspp for existing
software but also have caused and worsened the processuornieottieneck. This
means to achieve the highest possible performance, code hasestructured and
tuned to the memory hierarchy.

1 At the time of this writing 8 cores per chip is the best commonly available muéi@PU
configuration.



Evolution of Intel Platforms

Floating point peak performance [Mflop/s]
CPU frequency [MHz]

100,000

work required

10,000

/ Core2

T Pentium 4 Duo

Core2
Extreme
1,000

Pentium III

Pentium 11 free speedup

Pentium Pro
100

—e&—single precision
—O—double precision
=—4—CPU frequency

Pentium

10 r T T T T T T T
1993 1995 1997 1999 2001 2003 2005 2007
Year

data: www.sandpile.org

Fig. 1. The evolution of computing platform’s peak performance versus theld @equency
explains why high performance software development becomesasiogdy harder.

— The times of free speed-up are over; future performancega@due to parallelism
in various forms. This means, code has to be rewritten ustotpv instructions and
multiple threads and in addition has to be optimized for tleemary hierarchy.

To quantify the problem we look at two representative exaspWhich are among
the most important numerical kernels used: the discretei€ouwansform (DFT) and

the matrix-matrix multiplication (MMM). The DFT is used ass disciplines and is the
most important tool used in signal processing; MMM is thec@likernel in most dense
linear algebra algorithms.

It is well-known that the complexity of the DFT for input sizeis O(nlog(n)) due
to the availability of fast Fourier transform algorithmsHFs) [5]. Fig. 2 shows the
performance of four different FFT implementations on aeli@ore platform with four
cores. Ther-axis is the input sizee = 24,...,2'8. They-axis is the performance in
Gflop/s. For all implementations, the operations counttisreded a$n log,(n), so the
numbers are proportional to inverse runtime. The bottomdimows the performance of
the implementation by Numerical Recipes [6] compiled with best available compiler
(the Intel vendor compiler icc 10.1 in this case) and allmiations enabled. The next
line (best scalar) shows the performance of the fastestigtdrC implementation for
the DFT and is roughly 5 times faster due to optimizationstfiermemory hierarchy.
The next line (best vector) shows the performance when vawtructions are used in
addition, for a further gain of a factor of 3. Finally, for ¢gr sizes, another factor of 2



Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]
30

25
Best vector and parallel code

20

15 Best vector code

10

Best scalar code

5 M o— o — o o o o o o 0.

Numerical Recipes \

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144
input size

Fig. 2. Performance of four single precision implementations of the discretadfdtansform.
The operations count is roughly the same.

can be gained by writing multi-threaded code to use all soecores. Note that all
four implementationsiave roughly the same operations cofmta given size but the
performance difference is a factor of 12 for small sizes, arfdctor of up to 30 for
large sizes. The uppermost three lines correspond to causaed by Spiral [7, 8]; a
roughly similar performance is achieved by FFTW [9-11].

Fig. 3 shows a similar plot for MMM (assuming square matrjcedere the bottom line
corresponds to a standard, triple loop implementationelttez performance difference
with respect to the best code can be as much as 160 timesdiimgla factor of 5-20
solely due to optimizations for the memory hierarchy. Ak timplementations have
exactly the same floating point operations coun2of. The top two lines are from
Goto BLAS [12]; the best scalar code is generated using AT[¥S3.

To summarize the above discussion, the task of achievinhigest performance with
an implementation usually lies to a great extent with thegmomer. For a given prob-
lem, he or she has to carefully consider different algorthand possibly restructure
them to adapt to the given platform’s memory hierarchy aradlable parallelism. This
is very difficult, time-consuming, and requires interdmiciary knowledge about al-
gorithms, software optimizations, and the hardware agchire. Further, the tuning
process is platform-dependent: an implementation opéchfar one computer will not
necessarily be the fastest one on another, since perfoentipends on many microar-
chitectural features including but not restricted to th&adle of the memory hierarchy.
Consequently, to achieve highest performance, tuning dag trepeated with the re-
lease of each new platform. Since the times of a free speatit6 frequency scal-
ing) are over, this retuning has become mandatory if anyopeiince gains are desired.
Needless to say, the problem is not merely an academic ohenbeuthat affects the
software industry as a whole.



Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Extreme 3 GHz
Performance [Gflop/s]

50
45 Best vector and parallel code

40 =

35

30
Multiple threads: 4x
25

20

15 Best vector code

10
5 { Best scalar code Vector instructions: 2x

Triple loop Memory hierarchy: 5-20x
0 M= T T T T

T T T |
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
matrix size

Fig. 3. Performance of four double precision implementations of matrix-matrikiptication.
The operations count is exactly the same.

Automatic performance tuning. A number of research efforts have started to address
this problem in a new area called “automatic performancéntlif14]. The general
idea is to at least partially automate the implementaticth @ptimization procedure.
Two basic approaches have emerged so far in this area: aeldiptiaries and source
code generators.

Examples of adaptive libraries include FFTW [10] for thecdéte Fourier transform

and adaptive sorting libraries [15, 16]. In both cases, itiraties are highly optimized,

and beyond that, have degrees of freedom with regard to theeardivide-and-conquer
strategy (both DFT and sorting are done recursively in thibsaries). This strategy is

determined at runtime, on the given platform, using a sear@thanism. This way, the
library can dynamically adapt to the computer’s memorydmey. Sparsity and OSKI

from the BeBOP group [17-20] is are other examples of sudtraries, used for sparse
linear algebra problems.

On the other hand, source code generators produce algoritplementations from
scratch. They are used to generate either crucial compgnanltibraries in their en-
tirety. For instance, ATLAS (Automatically Tuned Lineargsbra Software) and its
predecessor PHIPAC [21, 18, 22] generate the kernel cod®lfdikM and other basic
matrix routines. They do so by generating many differeniavds arising from differ-
ent choices of blocking, loop unrolling, and instructiodering. These are all measured
and the fastest one is selected using search methods.

FFTW also uses a generator to produce small size DFT ker2g]sHlere, no search
is used, but many optimizations are performed before theahcbde is output. Spiral
[7,24] is a library generator for arbitrary sized lineamséorms including the DFT,
filters, and others. Besides enumerating alternativesiratohtrast to other work, Spi-
ral uses an internal domain-specific mathematical langt@ggtimize algorithms at
a high level of abstraction before source code is generdteid. includes algorithm
restructuring for the memory hierarchy, vector instrugtipand multi-threaded code



[24-26]. FLAME considers dense linear algebra algorithrd &nin spirit similar to
Spiral. It represents algorithms in a structural form andwahhow to systematically
derive alternatives and parallelize them [27-29].

Other automatic performance tuning efforts include [1¥#]dparse linear algebra and
[30] for tensor computations.

This new research is promising but much more work is needealitomate the im-
plementation and optimization of a large set of library fimeality. We believe that
program generation techniques will prove crucial for thisaeof research.

Summary. We summatrize the main points of this section:

— End of free-speedup for legacy co@RU frequencies have hit the power wall and
stalled. Future performance gains in computers will beinbthby increasing par-
allelism. This means that code has to be rewritten to takargdge of the available
parallelism and performance.

— Minimizing operations count does not mean maximizing perémce Floating-
point operations are much cheaper than cache misses. tastesmance requires
code that is adapted to the memory hierarchy, uses vectoudtions and multiple
cores (if available). As a consequence, we have the follgwhoblem.

— The performance difference between a straightforwardémgntation and the best
possible can be a factor of 10, 20, or moféis is true even if the former is based
on an algorithm that is optimal in its (floating-point) opioas count.

— Itis very difficult to write the fastest possible codiee reason is that performance-
optimal code has to be carefully optimized for the platfarmiemory hierarchy
and available parallelism. For numerical problems, coempitannot perform these
optimizations, or can only perform them to a very limitedesit

— Performance is in general non-portabl€he fastest code for one computer may
perform poorly on another.

— Overcoming these problenty automation is a challenge at the core of computer
science. To date this research area is still in its infancye €rucial technique that
emerges in this research area is generative programming.

Goal of this tutorial. The goal of this tutorial is twofold. First, it provides theader
with a small introduction to the performance optimizatidmamerical problems, fo-
cusing on optimizations for the computer’s memory hiergréle., the dark area in
Fig. 1 is not discussed. The computers considered in thosiditare COTS (commer-
cial off-the-shelf) desktop computers with the latest mégchitectures such as Core2
Duo or the Pentium from Intel, the Opteron from AMD, and thevBd”C from Apple
and Motorola. We assume that the reader has the level of lenlgelof a junior (third
year) student in computer science or engineering. Thisuded basic knowledge of
computer architecture, algorithms, matrix algebra, arid €oprogramming skills.

Second, we want to raise awareness and bring this topicrdiloslee program genera-
tion community. Generative programming is an active fieldeskarch (e.g., [31, 32]),



but has to date mostly focused on reducing the implementaffort in producing cor-
rect code. Numerical code and performance optimizatior Im@¢ been considered. In
contrast, in the area of automatic performance tuning,naragyeneration has started to
emerge as one promising tool as briefly explained in thigimitddowever, much more
research is needed and any advances have high impact pbtenti

The tutorial is in part based on the course [33].

Organization. Section 2 provides some basic background information oarigm
analysis, the MMM and the DFT, features of modern computstesys relevant to this
tutorial, and compilers and their correct usage. It alsatifies data access patterns that
are necessary for obtaining high performance on modern atanpystems. Section 3
first introduces the basics of benchmarking numerical codelzen provides a general
high-level procedure for attacking the problem of perfonc&optimization given an
existing program that has to be tuned for performance. Toisgalure reduces the prob-
lem to the optimization of performance-critical kernel$iigh is first studied in general
in Section 4 and then in Sections 5 and 6 using MMM and the DFaxamples. The
latter two sections also explain how program generatorseaapplied in this domain
using ATLAS (for MMM) and Spiral (for the DFT) as examples. \enclude with
Section 7.

Along with the explanations, we provide programming exagsito provide the reader
with hands-on experience.

2 Background

In this section we provide the necessary background fortdiisial. We briefly review
algorithm analysis, introduce MMM and the DFT, discuss tterary hierarchy of off-
the-shelf microarchitectures, and explain the use of ctarpiThe following standard
books provide more information on algorithms [34], MMM aimar algebra [35], the
DFT [5, 36], and computer architecture and systems [37, 38].

2.1 Cost Analysis Of Algorithms

The starting point for any implementation of a numericalbpem is the choice of al-
gorithm. Before an actual implementation, algorithm asislybased on the number of
operations performed, can give a rough estimate of the peé&ioce to be expected. We
discuss the floating point operations count and the degresuse.

Cost: asymptotic, exact, and measuredt is common in algorithm analysis to repre-
sent the asymptotic runtime of an algorithm@anotation asO(f(n)), wheren is the
input size andf, a function [34]. For numerical algorithmg(n) is typically determined
from the number of floating point operations performed. Thaotation neglects con-
stants and lower order terms; for exam@l&n® + 100n?) = O(5n3). Hence it is only
suited to describe the performartcend but not theactual performance itself. Further,



it makes a statement only about the asymptotic behaviortthe behavior as goes to
infinity. Thus it is in principle possible that an(n?) algorithm performs better than an
O(n?) algorithm for all practically relevant input sizes

A better form of analysis for numerical algorithms is to cartgotheexactnumber of
floating point operations, or at least the exact highestraeten. However, this may be
difficult in practice. In this case, profiling tools can be disa an actual implementation
to determine the number of operations actually performée. [&tter can also be used
to determine the computational bottleneck in a given imgetation.

However, even if the exact number of operations of an algoriénd its implementation
is known, it is very difficult to determine the actual runtinfes an example consider
Fig. 3: all four implementations require exacily? operations, but the runtime differs
by up to two orders of magnitude.

Reuse: CPU bound vs. memory boundAnother useful measure of an algorithm is the
degree of reuse. The asymptotic reuse foOdyi(n)) algorithm is given byO(f(n)/n)

if n is the input size. Intuitively, the degree of reuse meashiogsoften a given input
value is used in a computation during the algorithm. A higbrde of reuse implies
that an algorithm may perform better (in terms of operatjpessecond) on a computer
with memory hierarchy, since the number of computations idatas the number of
data transfers from memory to CPU. In this case we say thaaldg@ithm isCPU
bound A low degree of reuse implies that the number of data tras$fem memory to
CPU is high compared to the number of operations and the rpeafoce (in operations
per second) may deteriorate: in this case we say that theithigois memory bound

A CPU bound algorithm will run faster on a machines with adastPU. A memory
bound algorithm will run faster on a machine with a faster ragnbus.

2.2 Matrix-Matrix Multiplication

Matrix-matrix multiplication (MMM) is arguably the most ipprtant numerical kernel
functionality. It is used in many linear algebra algorithmugeh as solving systems of
linear equations, matrix inversion, eigenvalue compatestj and many others. We will
use MMM, and the DFT (Section 2.3) as examples to demonstiattenizations for
performance.

Definition. Given ak x m matrix A = [a; ;] and anm x n matrix B = [b; ;], the
productC = AB is ak x n matrix with entries

m
Cij = E i by ;-
k=1

For actual applications, usually = C' + AB is implemented instead ¢f = AB.

Complexity and analysis.Given twon x n matricesA, B, MMM computed ag”
C + AB by definition requires:®> multiplications and:® additions for a total on?3



O(n?) floating point operations. Since the input data (the matjiteve sizeD(n?),
the reuse is given b@(n3/n?) = O(n).

Asymptotically better MMM algorithms do exist. Strassealgorithm [39] requires
only O(n'°827) ~ O(n?8°%) operations. The actual crossover point (i.e., when it re-
quires less operations than the computation by definit®afn = 655. However, the
more complicated structure of Strassen’s algorithm andiétaker numerical stability
reduce its applicability. The best-known algorithm for MMis1due to Coppersmith-
Winograd and require®(n?376) [40]. The large hidden constant and a complicated
structure have so far made this algorithm impractical fat egpplications.

Direct implementation. A direct implementation of MMM is the triple loop shown
below.

/I MMM - direct implementation
for (i=0; i<m; i++)
for (j=0; j<p; j++)
f or (k=0; k<n; k++)
cfilil += afilik] * bIK][il;

BLAS and LAPACK. BLAS (Basic Linear Algebra Subprogram) is a set of standard-
ized basic linear algebra operations, including MMM [4thplementations of BLAS
are provided by packages such as ATLAS and Goto BLAS. BLASimes are used as
kernels in fundamental linear algebra algorithms suchnesfiequation solving, eigen-
value computations, singular value decompositions, LdI&ky/QR decompositions,
and others. Such higher level functions are implementedéyAPACK (Linear Al-
gebra PACKage) library, [42] using MMM and other BLAS rowmas kernels (see
Fig. 4). The idea behind this two-level design is to redesigd/or re-optimize the
BLAS implementations for new hardware architectures, &vh#lusing LAPACK with-
out a need for modification. The performance improvements the BLAS implemen-
tation then translate into performance gains for the LAPAiKary. This design has
proven very successful until the release of multicore systavhich appears to require
a redesign of LAPACK.

LAPACK Static

BLAS Re-implemented or regenerated
for each platform

Fig. 4. LAPACK is implemented on top of BLAS.

Further reading.

— Linear algebraGeneral information about numerical linear algebra carobad in
[35, 38].



10

— BLAS. ATLAS provides an implementation of BLAS, as does Goto BLAStther
information on ATLAS is available in [13, 21, 43]. Details @oto BLAS can be
found at [12, 44].

— Linear algebra libraries. APACK is described in [45, 42]. The distributed memory
extension ScaLAPACK is described in [46, 47]. An alternatypproach is pursued
by PLAPACK [48, 49] and FLAME [28, 27, 50].

2.3 Discrete Fourier Transform

The discrete Fourier transform (DFT) is another numerieshkl of importance in a
wide range of disciplines. In particular, in the field of sijprocessing, the DFT is ar-
guably the most important tool used. Even though the DFT sesdrfirst glance based
on linear algebra, it is in its nature fundamentally diffgr&éom MMM. In particular,

it is never computed by definition—fast algorithms are akvaged, instead. The tech-
niques used by these fast algorithms are different frometlertiques used to speed up
MMM.

Definition. The discrete Fourier transform (DFT) of an input vectoof lengthn is
defined as the matrix-vector product

Y= DFTn z, DFTn = [wﬁé]ogk,€<na Wnp = 6727”/”7 1=+—1

In words, w,, is a primitive nth root of unity. In this tutorial we assume thatis a
two-power.

Complexity and analysis.Computing the DFT by definition requiré3(n?) many op-
erations, and is never done in practice. There exists a nuofili@st algorithms, called
fast Fourier transforms (FFTs), that reduce the runtimé@ta log(n)) for all sizesn
[5]. Forn = 2F, the FFTs used in practice require betweerlog,(n) + O(n) and
5nlog,(n) + O(n) many operations. The best known FFT has a costaflog, n +
O(n) [51]. The degree of reuse is hen@élog(n)), less than for MMM, which explains
the performance drop in Fig. 2 for large sizes when the waorkt is too large for the
L2 cache.

We defer a detailed introduction of FFTs to Section 6.

Direct implementation. In contrast to MMM, a straightforward implementation of the
DFT is not done by definition, but performed by a direct impégration of an FFT. One
example is the so-called iterative radix-2 FFT algorithningslemented by Numerical
Recipes [6], whose performance was shown in Fig. 2. The sporeding code is shown
below.

#i ncl ude <math.h>

#defi ne SWAP(a,b) tempr=a;a=b;b=tempr

voi d fourl( float =xdata, int *nn, int =isign)

{ I+ altered for consistency with original FORTRAN.
/= Press, Flannery, Teukolsky, Vettering "Numerical



* Recipes in C" tuned up ; Code works only when *Nnn is
* a power of 2 */
int n, mmax, m, j, i
doubl e wtemp, wr, wpr, wpi, wi, theta, wpin;
doubl e tempr, tempi, datar, datai,
datalr,datali;
n = x*xnn * 2;

J 0;
for(i=0;i<n;i+=2)
{if (>1i{ /* could use j>i+1 to help
* compiler analysis */
SWAP(data[j], datali]);
SWAP(data]j + 1], datafi + 1]);
}
m = *nn;
while (m >= 2 & & j >= m) {
j=m
m >>= 1;
}
] =m
}
theta = 3.141592653589795 * 5;
if (xisign < 0)
theta = -theta;
wpin = 0; [+ sin(+-Pl) */

for(mmax = 2; n > mmax; mmax *= 2)
{ wpi = wpin;
wpin = sin(theta);
wpr = 1 - wpin * wpin - wpin  * wpin;
[+ cos(theta *2) =/
theta =*= .5;
wr = 1;
wi = 0;
for(m = 0; m < mmax; m += 2)
{]j=m+ mmax;
tempr = ( doubl e) wr =*(datalr = data[j]);
tempi = ( doubl e) wi «(datali = datafj + 1]);
for(i =m; i< n- mmax * 2, 0 += mmax * 2)
{ /* mixed precision not significantly more
* accurate here; if removing double casts,
* tempr and tempi should be double */
tempr -= tempi;
tempi = ( doubl e) wr =datali + ( double) wi =*datalr;

/* don't expect compiler to analyze j > i+1 */
datalr = data[j + mmax * 2]

datali = data[j + mmax * 2 + 1];

datafi] = (datar = data[i]) + tempr;

datali + 1] = (datai = datali + 1]) + tempi;
data[j] = datar - tempr;
datalj + 1] = datai - tempi;

11



12

tempr = ( doubl e) wr =datalr;
tempi = ( doubl e) wi *datali;
j += mmax * 2;

}

tempr -= tempi;

tempi = ( doubl e) wr =datali + ( double) wi =*datalr;

datafi] = (datar = data[i]) + tempr;

datali + 1] = (datai = datafi + 1]) + tempi;

data[j] = datar - tempr;

data[j + 1] = datai - tempi;

wr = (wtemp = wr) * wpr - wi * wpi;

wi = wtemp * wpi + wi * wpr;

Further reading.

— FFT algorithms[52, 36] give an overview of FFT algorithms. [5] uses the Kro-

necker product formalism to describe many different FFToatgms, including
parallel and vector algorithms. [53] uses the Kroneckemfdism to parallelize
and vectorize FFT algorithms.

FFTW.FFTW can be downloaded at [11]. The latest version, FFTW3sssdbed
in [10]. The previous version FFTW2 is described in [9] anddhdelet generator
genfftin [23].

SPIRAL. Spiral is a program generation system for transforms. The spstem
is described in [7] and on the web at [8]. Using Kronecker pitdnanipulations,
SIMD vectorization is described in [54, 24], shared mem@&@¥IP and multicore)
parallelization in [25], and message passing (MPI) in [55].

Open source FFT librarieBFTPACK [56] is a mixed-radix Fortran FFT library.
The GNU Scientific library (GSL) [57] contains a C port of FFRGK. UHFFT
[58,59] is an adaptive FFT library. Numerical Recipes [6htains the radix-2
FFT implementation shown above. FFTE [60] provides a palr&lFT library for
distributed memory machines.

Proprietary FFT librarieSthe AMD Core Math Library (ACML) [61] is the vendor
library for AMD processors. Intel provides fast FFT implemegions as a part of
their Math Kernel Library (MKL) [62] and Integrated Perfoamce Primitives (IPP)
[63]. IBM’s IBM Engineering and Scientific Software Libra(gSSL) [64] and the
parallel version (PESSL) contain FFT functions optimizediBM machines. The
vDSP library contains FFT functions optimized for AltiVeEhe libraries of the
Numerical Algorithms Group (NAG) [65] and the Internatibhdathematical and
Statistical Library (IMSL) [66] also contain FFT functiolitst.



13

2.4 State-Of-The-Art Desktop and Laptop Computer Systems

Modern computers include several performance enhanciogparichitectural features
like cache systems, a memory hierarchy, virtual memory,@Rd features like vector
and parallel processing. While these features usually &seréhe achievable perfor-
mance, they also make the optimization process more comipéx section introduces
several microarchitectural features relevant to writingtfcode. For further reading,
refer to [37, 38].

Memory hierarchy. Most computer systems usen@emory hierarchyto bridge the
speed gap between the processor(s) and its connection tomeanory. As shown in
Fig. 5, the highest levels of the memory hierarchy contamftfstest and the smallest
memory systems, and vice versa.

CPU

Registers

~1-2 cycles
smaller larger
faster access L1 Cache slower
more expensive ~8-32 cycles cheaper

L2 Cache
~300 cycles

Memory
~50,000 cycles

Hard Disk

Fig. 5. Memory hierarchy. Typical latencies for data transfers from the CRthth of the levels
are shown. The numbers shown here are only an indication, and tteé agtmbers will depend
on the exact architecture under consideration.

A hierarchical memory enables the processor to take adyarghthe memory local-
ity of computer programs. Optimizing numerical programstfie memory hierarchy
is one of the most fundamental approaches to producing @i, @and the subject of
this tutorial. Programs typically exhibit temporal and tiglanemory locality. Temporal
locality means that a memory location that is referencedgmpgram will likely be ref-
erenced again in the near future. Spatial locality mearistibdikelihood of referencing
a memory location by a program is higher if a nearby locatias vecently referenced.
High performance computer software must be designed sthtb&iardware can easily
take advantage of locality. Thus, this tutorial focuses oiting fast code by designing
programs to exhibit maximal temporal and spatial locaditie

Registers.Registers inside the processor are the highest level of émary hierarchy.
Any value (address or data) that is involved in computatias to eventually be placed



14

into a register. Registers may be designed to hold only afgpgge of value (special
purpose registers), or only floating point values (e.g.bll®&P registers), vector values
(vector registers), or any value (general purpose registéhe number of registers in
a processor varies by architecture. A few examples are gedvin Table 1. When an
active computation requires more values to be held thanetister space will allow,
aregister spilloccurs, and the register contents are written to lower segEmemory
from which they will be reloaded again. Register spills axpansive. To avoid them
and speed up computation, a processor might make use afahtegisters that are not
visible to the programmer. Many optimizations that work ¢imew levels of the memory
hierarchy can typically also be extended to the registallev

Processor Integer Registers Double FP Registers
Core2 Extreme 16 16
Itanium 2 128 128
UltraSPARC T2 32 32
POWER®6 32 32

Table 1. Sample scalar register space (per core) in various architecturedditioa to integer
and FP registers, the Core2 Extreme also has 16 multimedia registers.

Cache memory.Cache memory is a small, fast memory that resides betweandire
memory and the processor. It reduces average memory aatesshly taking advan-
tage of spatial and temporal locality. When the processtalilyi requests data from a
memory location (called a cache miss), the cache fetchestangs the requested data
and data spatially close. Subsequent accesses, titedan be serviced by the cache
without needing to access main memory. A well designed cagstem has a low miss
to hit ratio (also known as just the miss ratio or miss rate).

Level/Type Size Associativity

L1 Data (per core) 32 KB 8-way set associative
L1 Instruction (per core) 32 KB 8-way set associative
L2 Unified (common) 4 MB 8-way set associative

Table 2. Cache system example: Intel Core2 Duo, Merom Notebook processor

Caches, as shown in Fig. 6 are divided into cache lines (alewk as blocks) and sets.
Data is moved in and out of cache memory in chunks equal tarthesize. Cache lines
exist to take advantage of spatial locality. Multiple les/ef caches and separate data and
instruction caches may exist, as shown in Table 2. Cachedmédirect mapped (every
main memory location is mapped to a specific cache locatioh)way set associative
(every main memory location can be mapped to preciggdpssible cache locations).



15

Memory Address

Remaining bits 3bits 2bits 2bits
I Tag [ [ [ ]
I J Cache line Floats
index
g - AR
@
(%]
8 Sets
[0..7]
Cache line
4 Ways [0..3]

Fig. 6. 4-way set associative cache with cache line size of 4 single precisida (baytes per
float) per line, and cache size of 128 floats (total cache size is 512 bytesfigure also illus-
trates the parts of a memory address used to index into the cache. Sthatagmelement under
consideration is 4 bytes long, the two least significant bits are irrelevarisindke. The number
of bits used to address into the cache line would be different for doubtéson floats.

In addition to misses caused due to data being brought imé&ofitst time (compulsory
misses) and those due to cache capacity constraints (bap@sses), caches that are
not fully associative can incur conflict misses [67].

Cache
Main memory
X, X; X, X; X
e CPU request x,
Xg X9 Xq0 X11 Xq2.... — > |x0 | X1 | X2| X3
Cache line size
= 4 floats

Fig. 7. Neighbor use and reuse: When the CPU requestso, x1, andxs are also brought into
the cache since the cache line size holds 4 floats.

Since cache misses are typically expensive, writing fadedovolves designing pro-
grams to have low miss rates. This is accomplished using tvpmitant guiding prin-
ciples, illustrated in Fig. 7 and described below:



16

— Reuse: Temporal locality.Once data is brought into the cache, the program should
reuse it as much as possible before it gets evicted. In othedsyprograms must
try to avoid scattering computations made on a particulta lteation throughout
the execution of the program. Otherwise, the same data {adagzation) has to go
through several cycles of being brought into the cache abdexjuently evicted,
which increases runtime.

— Neighbor use (using all data brought in): Spatial locality Data is always brought
into the cache in chunks the size of a cache line. This is sedtig. 7, where
one data element, was requested, and three others are also brought in singe the
belong to the same cache line. To take advantage of thisigregmust be designed
to perform computations on neighboring data (physicalbselin memory) before
the line is evicted. This might involve reordering loops:, fiastance, to work on
data in small chunks.

These two principles work at multiple levels. For instaramje can be designed to use
and reuse all data within a single cache block, as well asiwith entire cache level.
In fact, these principles hold throughout the memory higrgrand thus can be used
at various cache and memory levels. Depending on the cotgutaeing performed,
techniques that use these principles may not be trivial $ogteor implement.

In scientific or numerical computing, data typically comsisf floating point numbers.
Therefore, it helps to view the cache organization, linad,sets in terms of the number
of floating point numbers that can be held. For instance, dlthe shown in Fig. 6 is a
512 byte, 4-way set associative cache with a line size of 1@shyhere are a total of
32 lines (512 bytes / 16 bytes per line), and 8 sets (32 lindm£4 per set). If we note
that each cache line can hold 4 floats (16 bytes / 4 bytes pdY, fleacan immediately
see that the cache can hold a total of 128 floats. This meahsddtasets larger than
128 floats will not fit in the cache. Also, if we make an initigcass to 128 consecutive
floats, there will be a total of 32 cache misses and 96 cachédiitce 4 floats in a line
are loaded on each cache miss). This gives us a rough estifnidite runtime of such
a set of accesses, which is useful both in designing progeautién performing sanity
checks.

Cache analysisWe now consider three examples of accessing an array inugsie-
quences, and analyze their effects on the cache.

Consider a simple direct mapped 16 byte data cache with teloeciines, each of size
8 bytes (two floats per line). Consider the following codeusatge, in which the array
X is cache-aligned (that isy [0] is always loaded into the beginning of the first cache
line) and accessed twice in consecutive order:

float X[8];
for(int j=0; j<2; j++)
for(int i=0; i<8; i++)
access(X[i]);

The top row on Fig. 8 shows the states of the cache after ewerydut of the total of
sixteen) accesses for this example. To analyze the caclyriftcand pattern of this
code sequence, we first observe that the size of the arrayaf8)lexceeds the size of



17

Example 1: Sequential access

line0 [X0 m|X1h X4 m|X5h X0m| X1h X4 m|X5h

line1 X2m[X3h X6 m[X7h X2m[X3h X6 m[X7h

Example 2: Strided access

line0 (X0 m X4 m X1m X5m| [XOm X4 m X1m X5m

line1 [X2m X6 m X3 m X7m| [X2m X6 m X3 m X7m

Example 3: Blocked access

line0 (X0 m|X1h X0h|X1h X4 m| X5 h X4h|X5h

line1 X2m| X3 h X2h|X3h X6 m| X7 h X6 h|X7h

Fig. 8. Cache access analysis: The state of the complete cache for eachesiastpwn after

every two accesses, along with whether the two accesses resulted intitsses (shown by h
or m). The two requests just made are shown in black, while the remaiantggf the cache are
shown in gray. To save space, square brackets are not stodwrefers toX [0].

the cache (4 floats). We then observe that a total of 16 accassanade to the array.
To calculate how many result in hits, and how many in missesphserve the cache
access pattern of the code. The pattern is “012345670123466ly the indices of
X accessed are shown). We note that an access to any even indesesults in that
element and the subsequent element being loaded sincerthieythe same cache line.
Thus, accessing [0] loads X [0] and X [1] into the cache. We can then compute the
hit/miss pattern to be: “MHMHMHMHMHMHMHMH". So in all, thee are 8 hits and

8 misses.

We now look at another code sequence that again accessesrtb@gay twice (similar
to the last example), albeit with a stride of 2:

float X[8];
for(int j=0; j<2; j++)
{ for(int i=0; i<7; i+=2)
access(X]i]);
for(int i=1; i<8; i+=2)
access(X[i]);

The middle row on Fig. 8 shows the corresponding cache dhatekis example. The
access pattern here is “0246135702461357”. A similar ambhows us that the miss
ratio is even worse: every single access in this patterrtseisua miss (with a total of
16 misses and 0 hits). This example illustrates an impoptaint: strided accesses gen-
erally result in poor cache efficiency, since they effedyiVvenake the cache smaller.”



18

Finally, let us consider a third code sequence that agaiesses the same array twice:

fl oat X[8];
for (i=0; i<2; i++)
for (k=0; k<2; k++)
for (j=0; j<4; j++)
access(X[j+(i *4));

The bottom row on Fig. 8 shows the corresponding cache dtatdisis example. The
access pattern here is “0123012345674567". Counting tseahd misses, (“MHMH-
HHHHMHMHHHHH"), we observe that there are 12 hits and 4 mis3&fe also note
that if this rearrangement is legal, it is a cache optimizexsion of the original code
sequence. In fact, this rearrangement is an example of lhtile previously mentioned
principles behind optimizing for the memory hierarchy:sewand neighbor use. Un-
like the first example, the “0123” block is reused here befiwimg evicted. Unlike the
second example, every time an even-indexed element isssxtabe succeeding odd-
indexed element which is a part of the same cache line is algtediately accessed.
Thus, analyzing the cache can help us estimate and impreveatthe performance of
a program.

CPU features.Modern microprocessors also contain other performancarerihg fea-
tures. Most processors contain pipelined superscalaofeoteer cores with multiple
execution units. Pipelining is a form of parallelism wheifedent parts of the proces-
sor work simultaneously on different components of diffgliestructions. Superscalar
cores can retire more than one instruction per processok clgcle. Out-of-order pro-
cessing cores can detect instruction dependencies anldetkge the instruction se-
quence for performance. The programmer has to be cognitttrese features in order
to be able to optimize for a particular architecture.

Most such aggressive cores also contain multiple executiits (for instance, floating
point units) for increased performance. This means thavegssor might be able to, for
instance, simultaneously retire one floating point addriresion every cycle, and one
floating point multiplication instruction every other cgclit is up to the programmer
and the compiler to keep the processor’s execution unitguedely busy (primarily via
instruction scheduling and memory locality) in order toi@gh maximum performance.

The theoretical rate at which a processor can perform flggtdint operations is know
as the processortheoretical peak performancé&his is measured in flop/s (FLoating
point OPerations per Second). For instance, a processoingiat 1 GHz that can retire
one addition every cycle, and one multiplication every ottycle has a theoretical
peak of 1.5 Gflop/s. The theoretical peak of a Core2 Extreroeqssor operating under
various modes is shown in Table 3.

In practice, cache misses, pipeline stalls due to depereeiranches, branch mispre-
dictions, and the fact that meaningful programs contaitruitions other than floating
point instructions, do not allow a processor to perform sthieoretical peak perfor-
mance. Further, the achievable performance also depentisednherent limitations
of the algorithm, such as reuse. For example, MMM, with aeealegree of)(n) can



19

lcore 2cores 4cores

x87 double 6 12 24
SSE2 double 12 24 48
x87 float 6 12 24

SSE float 24 48 96

Table 3.Core2 Extreme: Peak performance (in Gflop/s) for a 3 GHz Core2Beiprocessor in
various operation modes.

achieve close to the peak performance of 48 Gflop/s (as seEig.it8), whereas the
DFT with a reuse degree 6i(log(n)) reaches only about 50% (as seen in Fig. 2).

In summary, knowing a processor’s theoretical peak andgori#hm’s degree of reuse
gives us a rough estimate of the extent to which a prograndcpotentially be im-
proved.

Modern processors also contain two major explicit formsavhfielism: vector process-
ing and multicore processing, which are important for wgtfast code, but beyond the
scope of this tutorial.

Further reading.
— General computer architectufdz7, 38].

— CPU/architecture specifif68, 69].

2.5 Using Compilers

To produce fast code it is not sufficient to write and optimgrerce code—the program-
mer must also ensure that the code that is written gets cechjpito an efficient binary
executable. This involves the careful selection and useoofpiler flags, use of lan-
guage extensions, and monitoring and analyzing the corgpdetput. Furthermore,
in some situations, it is best to let the compiler know of b# degrees of freedom it
has, so it can optimize well. In other situations, it is bestlirect the compiler to do
exactly what is required. This section goes over the conpiteess, what to keep in
mind before, while, and after compiling, and some of the camipitfalls related to the
compiling process.

Variable declaration: memory allocation. Understanding how C handles the alloca-
tion of space for variables is beneficial. C assigns varg@atiedifferentstorage class
specifiershy default, based on where in the source code they appeadéfhaelt stor-
age class for a variable can be overridden by preceding ablardeclaration with the
desired storage class specifier.

Variables that are shared among source files useextern storage class. Global
variables belong to thetatic  storage class, and typically exist in static memory



20

(as do extern variables), which means that they exist asdarthe program executes.
Local variables belong to theuto (automatic) storage class, which means that they
are allocated on the stack automatically upon enteringotted block within which they
are defined, and destroyed upon exit. Tegister  storage class requests that the
compiler allocates space for the variable directly in théJC&yisters. These are useful
to eliminate load/store latencies on heavily used vargatdeep in mind that depending
on the compiler being used, care should be taken to inigial&ziables before usage.

Variable declaration: qualifiers. Most compilers provide further means to specify
variable attributes througualifiers A const qualifier specifies that a variable’s value
will never change. Avolatile qualifier is used to refer to variables whose values
might be influenced by sources external to the compiler'ssedge. Operations in-
volving volatile variables will not be optimized by the coitep, in order to preserve
correctness. Aestrict qualifier is especially useful to writing fast code, since it
tells the compiler that a certain memory address will bericetl to access via the
specified pointer. This allows for effective compiler optation.

Finallyy, memory alignment can also be specified by qualifielSuch
qualifiers are specific to the compiler being used. For in&an
_attribute  __ ((aligned(128))) requests a variable to be aligned at the
specified 128-byte memory boundary. Such requests alloiahles to be aligned to
cache line boundaries or virtual memory pages as desiradlaBiqualifiers can be
used to tell the compiler that the address pointed to by a@ois memory aligned.

Dynamic memory allocation. Dynamic memory allocation, usingalloc for exam-
ple, involves allocating memory in theeap and returning a pointer to the allocated
memory. If alignment is of importance, many libraries pdezamemalign function
(the Intel equivalent ismmmalloc ) to allocate memory aligned to a specified bound-
ary. The alternative is to allocate more memory than redquiaad to then check and
shift the returned pointer adequately to achieve the requatignment.

Inline assembly and intrinsics. Sometimes, it is best to write assembly code to ac-
cess powerful features of the machine which may not be dlaildia C. Assembly
can be included as a part of any program in C using inline alslseidowever, inline
assembly use must be minimized as it might interfere withmitenoptimizations. Ar-
chitecture vendors typically provide C language extersitmnallow programmers to
access special machine instructions. These extensidies] garinsics are similar to
function calls that allow the programmer to avoid writingjrie assembly. Importantly,
intrinsics allow the compiler to understand what data andéatrol the programmer is
manipulating, thus allowing for better optimization. As example, Intel's MMX and
SSE extensions to the x86 ISA can be accessed via C intripsiggded by Intel.

Compiler flags. Most compilers are highly configurable via a plethora of candhline
options and flags. In fact, finding the right set of compiletiags that yield optimal
performance is non-trivial. However, there are some baas to keep in mind while
using a compiler, as listed below. Note that these ideag/dpphost compilers.



21

— C standardsA compiler can be set to follow a certain C standard such as C99
Certain qualifiers and libraries might need specific C stedslo work. By switch-
ing to a newer standard, the programmer can typically conicate more to the
compiler, thus enabling it to work better.

— Architecture specificationddost compilers will compile and optimize by default
for a basic ISA standard to maximize compatibility. Machamel architecture spe-
cific optimizations may not be performed as a result. Foraimst, a compiler
on an AMD Athlon processor may compile to the x86 standard &fawt, and
not perform Athlon-specific optimizations. Instructingtbompiler to compile for
the correct target architecture may result in considenabtéormance gains. Addi-
tional flags may be required for these optimizations. Forrgde, gcc requires the
“-sse " flag to include vector instructions.

— Optimization levelsMost compilers usually define several optimization leveét t
can be selected. Determining the optimization level thaldg maximum perfor-
mance is a black art usually done by trial and error. A moreeggive optimization
level doesn’t necessarily yield better performance. Ojatition levels are usually
a shortcut to turn on or off a large set of compiler flags (dssed next).

— Specialized compiler option€ompilers typically perform numerous optimiza-
tions, many which can be selectively turned on or off and gouméd through com-
mand line flags. Loop unrolling, function inlining, insttien scheduling, and other
loop optimizations are only some of the available configle-aiptimizations. Usu-
ally, finding the right optimization level is sufficient, bsémetimes, inspection of
assembly code provides insights that can be used to fineemmeiler optimiza-
tions.

Compiler output. The output of the compiler is usually an executable binasymen-
tioned earlier, the compiler can also be used to produceuwsiintermediate stages,
including the preprocessed source, assembly code, andjbet code. Sometimes, it
is important and useful to visually inspect the assemblyedodbetter understand both
the performance of an executable and the behavior of the itenmp

Compilers also output warnings, which can be controlleduh compiler flags. Some-
times, a seemingly innocuous warning might provide exoeilesights into the source
of a bug, which makes these warnings a significant debuggiig t

Optimization reports are an important part of the compiletpat that must be in-

spected. For instance, a vectorizing compiler will infotme programmer of whether
it was able to successfully vectorize or not. A failure toteeize a program that was
expected to be vectorized is a reason for examining the anogarefully, and modify-

ing or annotating the code as appropriate.

In conclusion, it is important for programmers to be knowgeable about the compiler
that they use in order to be able to use the compiler effigieatld to ensure that poor
compiler usage does not diminish the results of code degdifprehigh performance.



22

Further reading.

— Gnu compiler collection (gccj70].

Intel compiler[71].

2.6 Exercises

1.

Direct implementations. Implement, execute, and verify:
— adirect implementation of MMM (code snippet given in Seati?2),
— the Numerical Recipes code for the DFT as given in [6],

This code will also be used in the exercises of later sections

. Determining hardware information. In this exercise, you will determine the rel-

evant hardware configuration of your computer. You will usis information in
later exercises.

Determine the following information about your computer:
— CPU type and clock speed
— For each cache: size, associativity, and cache line size
— Size of main memory
— System bus speed
Here are a few tips on how to determine this information:
— Look in the computer’s manual.
— Look in the CPU manufacturer’s manual.
— To obtain CPU information in Linux, executat /proc/cpuinfo

— To obtain cache information in Linux, search for lines witlet
word “cache” in the kernel ring buffer. You can do so by typing
dmesg | grep "CPU. =*cache’ 0N most systems.

. Loop optimization for the cache. Consider a 2-way set associative cache with

a cache size of 32KB, a cache line size of 32B, and a FIFO (Firdtirst Out)
replacement policy (this means if one of the two candidatdhedines has to be
replaced, it will be the one that was first brought into thehegc Consider two
single-precision floating point arrays (single precisiaafl= 4B),A and B with n
elements, where n is much larger than the cache and is a teulfithe cache size.
Further, assume that and B are both fully cache-aligned, i.e4[0] and B[0] map
to the first position in the first cache line.

Now consider the following pseudo code snippet:



23

for(i from O to n-1)
Alll = Al + BIf(i)]

wheref(4) is an index mapping function that reaBsat a stride of 8. (If for exam-
ple, B was 16 elements long, then reading it at stride 8 would réstltis access
pattern:f(i) = 0,8,1,9,2,10,3,11,4,12,5,13,6, 14,7, 15).

Assume an empty cache for each part of this exercise.

(a) (Disregard the code snippet for this part) What is the ebggenumber of cache
misses incurred by streaming once completely through adr&jone in se-
quential order, given the cache parameters above?

(b) (Disregard the code snippet for this part) What is the etgqgenumber of cache
misses incurred by streaming once completely through drajone at stride
of 8 given the cache parameters above?

(c) How many cache misses is the given pseudo code snhippettexpto incur?
(Assume, for simplicity, that index variables are not cathe

(d) Rewrite the code (without changing the semantics,averall computation) to
reduce the number of cache misses as much as possible. (Assursimplic-
ity, that index variables are not cached).

3 Performance Optimization: The Basics

In this section we will review the basic steps required tceasshe performance of
a given implementation, also known as “benchmarking.” Waufoon runtime bench-
marking as the most important case. (Other examples of beadting includes assess-
ing the usage of memory or other resources.)

For a given program, the basic procedure consists of theps:st

1. finding the hotspots (hotspots are the most frequentlgugge code regions),
2. timing the hotspots, and

3. analyzing the measured runtimes.

It is essential to find the parts of the program that perforenithlk of the computation
and restrict further investigation to theketspots Optimizing other parts of the pro-
gram will have little to no effect on the overall runtime. Irder to obtain a meaningful
runtime measurement, one has to build a test environmergaftin hotspot that exer-
cises and measures it in the correct way. Finally, one hasstsa the measured data and
relate it to the cost analysis of the respective hotspos Waiy one can make efficiency
statements and target the correct (inefficient) hotspdufther optimization.



24
3.1 Finding The Hotspots

The first step in benchmarking is to find the parts of the pnogwehere most time is
spent. Most development platforms contaiprafiling tool. For instance, the devel-
opment environment available on the GNU/Linux platform tedims the GNU gprof
profiler. On Windows platforms, the Intel VTune tool [72] thaugs into Microsoft’'s
Visual Studio [73] can be used to profile applications.

If no profiling tool is available, obtain first-order profiiinformation can be obtained
by inserting statements throughout the program that pribtiee current system time.
In this case, less is more, as inserting too many time poiatshmave side effects on the
measured program.

Example: GNU tool chain. We provide a small example of using the GNU tool chain
to profile a sample program.

Consider the following program:

#i ncl ude <stdio.h>

fl oat functionl()
{ int i; float retval=0;
f or (i=1; i<1000000; i++)
retval += (1/i);
r et ur n(retval);

}

fl oat function2()
{ int i; float retval=0;
f or (i=1; i<10000000; i++)
retval += (1/(i+1));
r et ur n(retval);

}

voi d function3() { return; }

i nt main()

{ int i
printf("Result: %.2f\n", functionl1());
printf("Result: %.2\n", function2());
i f (1==2) function3();
r et ur n(0);

}

Our final objective is to optimize this program. In order tosty we first need to find
where the program spends most of its execution time, uging .

As specified in thegprof manual [74], three steps are involved in profiling using
gprof :

1. Compile and link with profiling enabled:



25

gcc -O0 -Im -g -pg -0 ourProgram ourProgram.c

The resulting executable is instrumented. This means thaddition to executing
your program, it will also write out profiling data when exést. (Note: We use
the -00 flag to prevent the compiler from inlining our functions anerforming
other optimizing transforms that might make it difficult fas to make sense of the
profile output. For profiling to provide us with meaningfufoarmation, we would
need to compile at the level of optimization that we intendirally use, with the
understanding that mapping the profiler's output back tosttwerce code in this
case might involve some effort.)

2. Execute the program to generate the profile data file

.JourProgram

The program executes and writes the profile dagnton.out .

3. Rungprof on the profile data file to analyze the profile data
gprof ourProgram gmon.out > profile.txt
The analysis is nhow contained jmofile.txt . This file shows you how many times

each function was executed, and how much time was spentinfeaction, and plenty
of other detail. For our example program, we obtain:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

92.68 0.38 0.38 1 380.00 380.00 function2
7.32 0.41 0.03 1 30.00 30.00 functionl

We can see that most of the program runtime was spent in emgdubction2 , with
relatively little spent orfunction1l . This tells us that it is most important to optimize
the runtime ofunction2

Further down inprofile.txt , we see thagprof also tells us if the time taken by

a function was spent inside the function or inside other fienccalls made by the
function. Note thatprof can take several other arguments to produce different kinds
of profiling analyses for the executable, including the nantf times a certain line in
the source code was executed.

3.2 Timing a Hotspot

Once the hotspots have been found, we need to measure thiginefor further anal-
ysis. Each hotspot must be timed separately with an apg@teptiming routine. The
general idea is the following:

1. Read the current time (start time) from the appropriate tsource.

2. Execute the kernel/hotspot. Iterate an adequate nunfiltienes to obtain a mean-
ingful value off the time source.



26

3. Read the current time (end time) from the appropriate Emece.

. . End time— Start time
4. Execution time of the kernel/hotspot= . —,
Number of iterations

We first discuss time sources, and reading the time from tlteam; we explain how to
write a timing routine to get meaningful results.

Time functions. Depending on the system one is using, a variety of time seuxe
“get the current time” may be available:

— Most Unix systems defingettimeofday() to portably query the current time (as
defined in IEEE Std 1003.1).

— ANSI C definextime() andclock()  as portable ways of obtaining the current
time.

— On Intel processors, theltsc instruction reads the time stamp counter which
allows near-cycle accurate timing. On PowerPC procesgwmfspr instruction
reads the time-base register.

Generally, portable time functions have much less pregiian cycle-counter-based
methods. The pros and cons of various timing methods aesllistlow:

Timer type Advantages Disadvantages
Wall clock; Unix: Simple to use, highly portable Low resolution, does not account
gettimeofday() for background tasks

System timer; Unix: Gives wall clock, user-cpu, andRelatively low resolution
time command system-cpu times

Hardware timestamp High resolution, most precise and>oes not account for background

counter (discussedaccurate system load (effectively, wall

below) clock time), best for kernels with
short runtimes; non-portable

We give a simplified example of a timing macro baseddisc (a hardware times-
tamp counter) for a 32-hit Intel processor to be used withrbtioft VisualStudio:

typedef uni on
{ _int64 int64;

struct {_int32 lo, hi;} int32;
} tsc_counter;

#defi ne RDTSC(cpu_c) \

{ _asm rdtsc \
__asm mov (cpu_c).int32.lo,eax \
__asm mov (cpu_c).int32.hi,edx \

}



27

The corresponding code sequence in GNU C looks slightlyidfit:

typedef uni on
{ unsigned |l ong | ong int64;

struct {unsigned int lo, hi;} int32;
} tsc_counter;

#def i ne RDTSC(cpu_c) \
_asm__ _ volatile__ ("rdtsc" : \
"=a" ((cpu_c).int32.10), \
"=d"((cpu_c).int32.hi))

Timing routine. A timing routine calls the function that is to be timed with@xecut-
ing the original program. The objective is to isolate theletand measure the runtime
of the kernel with the least disturbance and highest acgyrassible. A timing routine
consists of the following steps:

— Initialize kernel-related data structures.

— Initialize kernel input data.

— Call kernel a few times to put microarchitectural comporeénto steady state.
— Read current time.

— Call kernel multiple times to obtain an adequately precsleier from the timing
source used.

— Read current time.
— Divide the time difference by the number of kernel calls.

To obtain more stable timing results, one often has to ruriipt@ltimings and take the
average or minimum value.

We give an example timing routine for an MMM function commgfiC = C + AB,
assuming all matrices are squayex N. TheRDTSQmacro is defined above.

doubl e time_MMM(i nt N, double *A, double *B, double *C)
{ Il init C
for (i=0; i<N; i++)
C[i] = 0.0;

/I put microarchitecture in steady state
MMM(A,B,C);

/I time

RDTSC(t0);

for(int i=0; i<TIMING_REPETITIONS; i++)
MMM(A,B,C);

RDTSC(t1);

/Il compute runtime in cycles



28

return (doubl e)((t1.int64-t0.int64)/TIMING_REPETITIONS);
}

Known problems. The following problems may occur when timing numerical ledsn

— Too few iterations of the function to be timed are executetvben the two time
stamp readings, and the resulting timing is inaccurate dp@or timer resolution.

— Too many iterations are executed between the two time staantings, and the
resulting timing is affected by system events.

— The machine is under load and the load has side effects onghsured program.
— Multiple timing jobs are executed concurrently, and thegifere with one another.
— Data alignment of input and output triggers cache problems.

— Virtual-to-physical memory translation makes timing preducible.

— The time stamp counter overflows and either triggers anrimpéror produces a
meaningless value.

— Reading the timestamp counters requires hundred(s) oésyalhich itself affects
the timing.

— The linking order of object files changes locality of statmstants and this pro-
duces cache interference.

— The machine was not rebooted in a long time and the operatstgra state causes
problems.

— The control flow in the numerical kernel being timed is da¢@ehdent and the test
data is not representative.

— The kernel is in-place (e.g., the input is a vectoand the output is written back
to x), and the norm of the output is larger than the norm of the tinRepetitive
application of the kernel leads to an exponential growthhef morm and finally
triggers floating-point exceptions which interfere witle timing.

— The transform is timed with a zero vector, and the operatystes is “smart,” and
responds to a request for a large zero-vector dynamic meatiogation by return-
ing a special zero-valued copy-on-write virtual memorygdgead accesses to this
“page” would be much faster than accesses to a page thauslgcillocated, since
this page is a special one maintained by the operating syfsteefficiency.

One needs to be very careful when timing numerical kerneaigléoout these problems.
Getting highly accurate, reproducible, stable timing hsdor the full range of problem

sizes is often nontrivial. Note that small problem sizes isfer from timer resolution

issues, while large problem sizes with longer runtimes mafesfrom the effects of

intervening processes.



29

3.3 Analyzing the Measured Runtime

We now know how to calculate the theoretical peak perforraame the memory band-
width for our target platform, and how to obtain the openagicount and the runtime
for our numerical kernel. The next step is to use these towtralperformance analysis
that answers two questions:

— What is the limiting resource, i.e., is the kernel CPU-boundnemory-bound?
This provides an idea of the various optimization methods ¢hn be used.

— How efficient is the implementation with respect to the limgt resource? This
shows the potential performance increase we can expecighraptimization.

Normalization. To assess the runtime behavior of a kernel as function of ithiglgm
size, the runtime (or inverse runtime) has to be normalizid tive asymptotic or exact
operations count. For instance, FFT performance is ustgiyrted in pseudo Mflop/s.
This value is computed &8 log, (n)/runtime forDFT,,; 5nlog,(n) is the operations
count of the radix-2 FFT. For MMM, the situation is easiencs all currently relevant
implementations have the exact operations cQurit

Let us now take a look at at Fig. 2. The Numerical Recipes Flogmam achieves al-
most the same pseudo Mflop/s value, independently of thdgmobize. This means
that all problem sizes run approximately at the same levéhdéfficiency. In contrast,
the best code shows a wide variation of performance, gépatal much higher pseudo
Mflop/s level. In particular, the performance ramps up to 25@s and then drops dra-
matically. This means, the DFT becomes more and more effigiiéim larger problems,
but only up to a certain size. Analysis shows that the breakdmccurs once the whole
working set of the computation does not fit into the L2 cacheraore and the prob-
lem switches from being CPU-bound to memory-bound, sineedRT’s reuse is only

O(log(n)).

In contrast, Fig. 3 shows that MMM maintains the performaseen for out-of-cache
sizes. This is possible since MMM has a reus@¢f.), higher than the DFT.

Fig. 2 shows that performance plots for high-performangaémentations can feature
unanticipated characteristics. That is especially truledfkernel changes behavior, for
instance, if it slowly changes from being CPU-bound to memmound as the kernel
size is varied.

Relative performance.Absolute performance only tells a part of the story. Conmgari
the measured performance to the theoretical peak perfasrgrows how efficient the
implementation is. A low efficiency for an algorithm with fiafently high reuse means
there is room for optimization.

We continue examining our examples from Fig. 2 and Fig. 3hwie target machine
being a Core2 Extreme at 3 GHz.

In Fig. 2, Numerical Recipes is a single-core single-pienig87 implementation and
thus the corresponding peak performance is 6 Gflop/s (sele BAbAs Numerical
Recipes reaches around 1 pseudo Gflop/s it runs at about 16% péak. Note that if



30

SSE (4-way vector) instructions and all four cores are udexpeak performance goes
up by a factor of 16. (see Table 3). The best scalar code ahewound 4 Gflop/s or
about 60% of the x87 peak. The fastest overall code uses SGE& emres and reaches
up to 25 Gflop/s or 25% of the quad-core SSE peak.

In Fig. 2, the overall fastest code reaches and sustaing 4Bdsflop/s or about 85% of
the quad-core SSE2 peak. This is much higher than the DFTIaodlae to the higher
degree of reuse in MMM compared to the DFT.

3.4 Exercises

1. Performance analysisIn this exercise, you will measure and analyze the perfor-
mance of the naive implementations of MMM and the DFT fromrEise 1 in
Section 2. The steps you will need to follow to complete thisreise are given
below. For this exercise, use the hardware configuratioroaf gomputer as you
determined in Exercise 2 on page 22.

(a) Determine your computer’s theoretical peak performafte theoretical peak
performance is the number of floating point operations thatlwe done in a
second. This is found by determining the CPU clock speedeaathining the
microarchitecture to look at the throughput of floating paperations. For
instance, a CPU running at 900 MHz that can retire 2 floatinigtpmpera-
tions per cycle, has a theoretical peak performance of 1808pKs. If the type
of instructions that the CPU can retire at the same rate dedu-MA (fused
multiply add) instructions, the theoretical peak would BO@ Mflop/s (2 mul-
tiplies and 2 adds per cycle = 4 operations per cycle). Ferakércise, do not
consider vector operations.

(b) Measure runtimedJse your implementations of the MMM and DFT as com-
pleted in Exercise 1 on page 22. Use the techniques desadrilfgeiction 3.2
to measure the runtimes of your implementations using at ke different
timers.

(c) Determine performance and interpret results.

— Performance: The performance of your implementation isiitsber of
floating point operations per unit time, measured in flopts. the DFT,
the number of operations should be assumetbg(n).

— Percentage peak performance: This is simply the percenfabeoretical
peak performance. For instance, if your measured code tung2 &flop/s
on a machine with a peak performance of 3.6 Gflop/s, this espilhat
your implementation achieves 33.3% of peak performance.

2. Micro-benchmarks: mathematical functions. We assume a Pentium compatible
machine. Determine the runtime (in cycles) of the follomadmgnputationsi, y are
doubles) as accurately as possible:



31

—y=ux
—y="7122
—y=x+7.12

— y =sin(x),z € {0.0,0.2,4.1,170.32}
— y = log(z), 2 € {0.001,1.00001, 10.65, 2762.32}
— y = exp(z),z € {~1.234e — 17,0.101,3.72, 1.234¢25}

There are a total of 15 runtimes. Explain the results. Theleark setup should
be as follows:

(a) Allocate two vector doubledN] andy[N] and initialize allx[i] to be one
of the values from above.
(b) Use

for (i=0; i<N; i++)

ylil = f(x[il);

to computey[i] = f(x[i]) , with f()  being one of the functions above
and time thifor loop.

(c) Choose N such that all data easily fits into L1 cache buethee enough iter-
ations to obtain a reasonable amount of work.

(d) Use the x86 time stamp counter via the interface provideddtsc.h , as
listed in Section 3.2.

To accurately measure these very short computations, egeltbwing guidelines:

— Only time the actual work, leave everything else (initiatizns, timing related
computations, etc.) outside the timing loop.

— Use the C preprocessor to produce a parameterized implatiento easily
check different parameters.

— You may have to run youior(N) loop multiple times to obtain reasonable
timing accuracy.

— You may have to take the minimum across multiple such measmts to ob-
tain stable results. Thus, you might end up with three ndstauk.

— You must put microarchitectural components into steady stefore the exper-
iment; variables where you store the timing results, thetimoutine and the
data vectors should all be loaded into the L1 cache, sindeecanisses might
result in inaccurate timing results.

— Alignment of your data vectors on cache line sizes or pagessian influence
the runtime significantly.



32

— The use of CPUID to serialize the CPU before reading the RDasé€xplained
in the Intel manual produces a considerable amount of oadrad may be
omitted for this exercise.

4  Optimization for the Memory Hierarchy

In this section we describe methods for optimizations tedat the memory hierarchy
of a state-of-the-art computer system. We divide the disonsinto four sections:

— Performance-conscious programming.
— Optimizations for cache.

— Optimizations for the registers and CPU.
— Parameter-based performance tuning.

We first overview the general concepts, and then apply theMMd and the DFT
later.

4.1 Performance-Conscious Programming

Before we discuss specific optimizations, we need to endwaedur code does not
yield poor performance because it violates certain proeedfundamental to writing
fast code. Such procedures are discussed in this sectigninitportant to note that
programming for high performance may go to some extent agatandard software
engineering principles. This is justified if performanceiitical.

Language: C.For high performance implementations, C is a good choicé&yrasas
one is careful with the language features used (see beldwe)néxt typical choice for
high-performance numerical code is Fortran, which tendsetanore cumbersome to
use than C when dynamic memory and dynamic data structuzesed.

Object-oriented programming (C++) must be avoided for qrenfince-critical parts
since using object oriented features such as operatoraginlg and late binding incurs
significant performance overhead. Languages that are mapited to native machine
code (like Java) should also be avoided.

Arrays. Whenever possible, one-dimensional arrays of scalar vegahould be used.
Assume a two-dimensional arréy is needed whose size is not known at compile
time. It is tempting to declare it as Aor A[J[] but as a consequence, every access
Al results in a sequence of two dependent pointer derefeignointwo loads.

If linearized, only one dereferencing or load per acceseéexad (at the expensive of
a simple index computation). If the size Afis known at compile time the compiler
should perform the linearization but it is again safer totdmurself.



33

Records.Using an abstract data type implementegtasct  often prevents compiler
optimization. Further, it may introduce implicit index cpotations and alignment is-
sues that may not be handled well by the compiler. Hence, oatgd struct  and
union data types should be avoided. For example, to representrgeat complex
numbers, vectors of real numbers of twice the size shouldskd,uvith the real and
imaginary parts appearing as pairs along the vector.

Dynamic data structures.Dynamically generated data structures like linked listd an
trees must be avoided if the algorithm using them can be img@hted on array struc-
tures instead. Heap storage must be allocated in large shaskopposed to separate
allocations for each object.

Control flow. Unpredictable conditional branches are computationatfyeasive on
machines with long pipelines. Henoshile loops and loops with complicated ter-
mination conditions must be avoidefdr loops with loop counters and loop bounds
known at compile-time must be used whenever poss#iMétch , ?: , andif state-
ments must be avoided in hot spots and inner loops, as theypeagnslated into con-
ditional branches. For small, repetitive tasks, macrosdretter choice than functions.
Macros are expanded before compilation while the compilestrperform analysis on
inline functions.

4.2 Cache Optimization

For lower levels in the memory hierarchy (L1, L2, L3 data eachLB = translation
lookaside buffer) the overarching optimization goal is¢age data as much as possible
once broughtin. The architecture of a set-associativeecgily. 6) suggests three major
optimization methods that target different hardware retsbns.

— Blocking: working on data in chunks that fit into the respextcache level, to
overcome restrictions due to cache capacity,

— Loop merging: merging consecutive loops that sweep thralaga into one loop
to reuse data in the cache and hence make the best use of tifitegsnemory
bandwidth, and,

— Buffering: copying data into contiguous temporary buffeysovercome conflict
cache misses due to cache associativity.

The actual optimization process applies one or more of titkeses to some of the levels
of the memory hierarchy. It is not always a good idea to apjplynathods to all levels,
as code complexity may increase dramatically.

Finally, the correct parameters for blocking and/or buffgron the targeted computer
system have to be found. A good approach is to write the prograrameterized, i.e.,
collect all parameters as named constants. Then it is edgyddferent parameter set-
tings by hand or using a script to find the variant that acta¢hie highest performance.

Blocking. The basic idea of blocking is to perform the computation itotks” that
operate on a subset of the input data to achieve memory tincHliis can be achieved



34

in different ways. For example, loops in loop nests, liketifige loop MMM in Sec-
tion 2.2 may be split and swapped (a transformation callegjiso that the working set
of the inner loops fits into the targeted memory hierarchgllewhereas the outer loop
jumps from block to block. Another way to achieve blockingashoose a recursive al-
gorithm to start with. Recursive algorithms naturally dizia large problem into smaller
problems that typically operate on subsets of the data.digthed and parameterized
well, at some level all sub-problems fit into the targeted msntevel and blocking is
achieved implicitly. An example of such an algorithm is tleeursive Cooley-Tukey
FFT introduced later in in (3).

Loop merging. Numerical algorithms often have multiple stages. Eachestaipesses
the whole data set before the next stage can start, whichupesdmultiple sweeps
through the working set. If the working set does not fit inte tache this can dramati-
cally reduce performance.

In some algorithms the dependencies do not requiredahatperations of a previous
stage are completed befoa@y operation in a later stage can be started. If this is the
case, loops can be merged and the number of passes througlortking set can be
reduced. This optimization is essential for implementifghkperformance DFT func-
tions.

Buffering. When working on multi-dimensional data like matrices, ladjig close ele-
ments can be far from each other in linearized memory. Feamte, matrix elements
in one column are stored at a distance equal to the numberlwfos of that ma-
trix. Cache associativity and cache line size get into coniflione wants to hold, for
instance, a small rectangular section of such a matrix inedeading to cache thrash-
ing. This means the elements accessed by the kernel are thapplee same cache
locations and hence are moved in and out during computation.

One simple solution is to copy the desired block into a carttics temporary buffer.
That incurs a one-time cost but alleviates cache thrasfihg. optimization is often
called buffering.

4.3 CPU and Register Level Optimization

Optimization for the highest level in the memory hierarcting registers, is to some
extent similar to optimizations for the cache. Howeversbaheeds to take into account
microarchitectural properties of the target CPU. Currégittend CPUs are superscalar,
out-of-order, deeply pipelined, feature complicated bhaprediction units, and many
other performance enhancing technologies. From a highl-[@eint of view, one can
summarize the optimization goals for a modern CPU as follédwfficient C program
should:

— have inner loops with adequately large loop bodies,
— have many independent operations inside an inner loop body,

— use automatic variables whenever possible,



35

— reuse loaded data elements to the extent possible,
— avoid math library function calls inside an inner loop if pitse.

Some of these goals might conflict with others, or are coimgicaby machine parame-
ters. The following methods help us achieve the stated goals

— Blocking
— Unrolling and scheduling
— Scalar replacement
— Precomputation of constants
We now discuss these methods in detail.

Blocking. Register-level blocking partitions the data into chunksadmch the compu-
tation can be performed within the register set. Only ihibads and final stores but no
register spilling is required. Sometimes a small amounpdlfisg can be tolerated. We
show the blocking of a single loop as example. Consider thengle code below.

for (i=0; i<8; i++)

{ y[2 *i] X[2 0] + x[2 *i+1];

y[2 xi+1] = x[2 *i] - x[2 i+1];
}

We block thei loop, obtaining the following code.

for (i1=0; i1<4; i1++)
for (i2=0; i2<2; i2++)
{ y[4 *i1+2 *i2]
y[4 *il+2 *i2+1]
}

X[ *il+2 *i2] + x[4 *il+2 *i2+1];
X[4 *i142 *i2] - X[4 *i1+2 *i2+1];

On many machines registers are only addressable by nametindirectly via other
registers (holding loop counters). In this case, once the fis into registers, either
loop unrolling or software pipelining with register rotati (as supported by Itanium) is
required to actually take advantage of register-blockedmgdation.

Unrolling and scheduling. Unrolling produces larger basic blocks. That allows the
compiler to apply strength reduction to simplify expressiolt decreases the number
of conditional branches thus decreasing potential brarispnedictions and condition
evaluations. Further it increases the number of operatiotie basic block and allows
the compiler to better utilize the register file. Howeveg touch unrolling may increase
the code size too much and overflow the instruction cache fdllmving code is the
code above with unrolled inner 1069 .

for (i1=0; i1<4; i1++)

{ y[4 =i1] = x[4 *il] + x[4 *il+1];
y[4 *il+l] = x[4 *il] - x[4 *il+1];
y[4 *il+2] = x[4 *il+2] + x[4 *il+3];

y[4 «i143] = X[4 *il+2] - X[4 *i1+3];



36

}

Unrolling exposes an opportunity to perform instructiomesduling. With unrolled
code, it becomes easy to determine data dependencies hats&ections. Issuing an
instruction right after a preceding instruction that it epéndent upon will lead to the
CPU pipeline being stalled until the former instruction gdetes. Instruction schedul-
ing is the process of rearranging code to include indepdrnidetructions in between
two dependent instructions to minimize pipeline stalls.

Scheduling large basic blocks with complicated depen@sntiay be too challenging
for the compiler. In this case source scheduling may helpir&oscheduling is the
(legal) reordering of statements in the unrolled basic kl@ifferent scheduling algo-
rithms apply different rules, aiming at, e.g., minimizingtdnce between producer and
consumer (which may potentially not be too short), and/arimizing the number of
live variables for each statement in the basic block. It imetimes better to source
schedule basic blocks and turn off aggressive schedulirtgédgompiler.

The number of registers, quality of the C compiler, and sizéhe instruction cache
limit the amount of unrolling, that increases performartegperiments show that on
current machines, roughly 1,000 operations are the limiteNthat unrolling always
increases the size of the loop body, but not necessarilyh8tauction-level parallelism.
Depending on the algorithm, more complicated loop tramsédions may be required.
One example is the MMM, discussed later.

Scalar replacement.In C compilers, pointer analysis is complicated, and usiene
the simplest pointer constructs can prevent “obvious”mjatations. This observation
extends to arrays with known sizes. It is very important f@aee arrays that are fully
inside the scope of an innermost loop by one automatic, Iseatéable per array ele-
ment. This can be done as the array access pattern does rotdapany loop variable
and will help compiler optimization tremendously. As anmxde, consider the follow-
ing code:

doubl e t[2];

for (i=0; i<8; i++)

{ t[0] = x[2 *i] + x[2 *i+1];
1] = x[2 *i] - x[2 *i+1];
yl2 xi] = 10] * D2 +1];
y[2 =i+1] = t[0] * D[2*i];

}

Scalarizingt will result in code that the compiler can better optimize:

doubl e t0, t1;

for (i=0; i<8; i++)

{10 = x[2 =*i] + x[2 ~*i+1];
tl = x[2 *i] - x[2 =*i+1];
y[2 *i] =t0 * D[2xi];
y[2 xi+1] = t1  * D[2x*i];

}



37

The difference is that0 andtl are automatic variables and can be held in registers
whereas the array will most likely be allocated in memory, and loaded and sdore
from memory for each operation.

If an input valuex[i] or precomputed datB[i] is reused it makes sense to first
copy the value into an automatic variable (or Di, respectively), and then reuse the
automatic variable.

doubl e t0, t1, x0, x1, DO;
for (i=0; i<8; i++)

{ x0 = x[2 =*i];

x1 = x[2 i+1];

DO = D[2*i];

t0 = x0 + x1

t1 = x0 - x1;

y[2 *i] =t0 = DO;

y[2 xi+1] = t1  * DO;
}

If the value ofy[i] is used as source in operations li{§ += t0 , one should use
scalar replacement fori]

Precomputation of constants.In a CPU-bound kernel, all constants that are known
ahead of time should be precomputed at compile time or lizigdgon time and stored

in a data array. At execution time, the kernel simply loadsgtecomputed data instead
of needing to invoke math library functions. Consider thiéofeing example.

for (i=0; i<8; i++)
ylil = x[i * sin(M_Pl =+ i/ 8);

The program contains an function call to the math libraryhia inner loop. Calling
sin()  can cost multiple thousands of cycles on modern CPUs. Hawali¢he con-
stants are known before entering the kernel and thus careicemputed.

static doubl e D[8];
voi d init()
{ for(int i=0; i<8; i++)
D[i] = sin(M_PI * i/ 8);
}

/Il in the kernel
for (i=0; i<8; i++)
ylil = x[i] = DIi;

The initialization function needs to be called only oncethé kernel is used over and
over again, precomputation results in enormous savingse lkernel is used only once,
chances are that performance does not matter.



38
4.4 Parameter-Based Performance Tuning and Program Genetin

Many of the optimizations for the memory hierarchy discdsabove have inherent
degrees of freedom such as the block size for blocking or dyeed of unrolling the
code. While it may be possible to derive a reasonable estimatfi these parameters,
the complexity of modern microarchitecture makes an exsadiption impossible. In
fact, often the best value may come as a surprise to the pnogea. As a consequence,
it makes sense to perform an empirical search to find thosammagers. This means
creating the variants, ideally through a set of scriptgugh parameterized coding (for
instance, defining all parameters as C preprocessor cosistiaan separate header file),
or through other program generation techniques, and miegstineir performance to
find the best choice. Since the result may depend on the tplggbrm, the search
should be repeated for each new platform.

This parameter-based performance optimization is oneedfetthniques used in recent
research on automatic performance tuning [14].

However, parameter based tuning is inherently not extengibthe sense that new
forms of code or algorithm restructuring cannot be incoaped easily. Examples could
be transformations for various forms of parallelism. A betolution than parameter-
based tuning may be properly designed domain-specific Egggiused in tandem with
rewriting systems. We will see the difference between thregeapproaches later in
Section 5.4 and 6.6 where we discuss program generationtiviAnd the DFT.

5 MMM

In this section, we optimize matrix-matrix multiplicatigMMM) for the memory hi-

erarchy. We explain the optimizations implemented by th&A$ [13], and organize
the steps as in Section 4. ATLAS is a program generator for M other BLAS

routines and also performs other optimizations not disdi$ere. It is introduced in
Section 5.4.

Our presentation closely follows the one in Yotov et al. [#8hich presents a model-
based version of ATLAS.

For the rest of this section, we will assume the dimensiotiseinput matricest andB
tobeN x K andK x M respectively, which implies aiv x M output matrixC'. For
simplicity, we will further assume that various optimizatiparameters are perfectly
divisible by these dimensions whenever such a division ¢gs®ary. The computation
considered i€” = C + AB.

Naive Implementation. Matrix-matrix multiplication (MMM), as defined in Sec-
tion 2.2, is naively implemented using the triple loop shdvatow. We use 2D array
notation (for instanceC[i][j] ) to keep the code more readable. However, in an im-
plementation where the matrix sizes are not known at contipile, one should resort
to a linearized representation ©f A, andB (see Section 4.1).



39

/I K, M, N are compile-time constants
doubl e CI[N][M], A[N][K], BIK][M];
/I Assume C is initialized to zero
for (i=0; i<N; i++)
for (j=0; j<M; j++)
{ for(k=0; k<K; k++)
} Clilll += Alilk] * BIK][L;

The C language stores two-dimensional arrays in row-majbero Therefore, a cache
miss to a (memory aligned) matrix element causes that eleaneiadjacent elements in
the same row being loaded into one cache line of the cach&igeg). Thus, accessing
a large matrix by rows is cache efficient, while accessing itddumns is not.

K M M

—k—> —j—> —j—

L |
} !

A B C

«—1—

Fig. 9. Data access pattern for the naive MMM.

Fig. 9 illustrates the data access pattern of the naive ingfgation. From this figure,
we see the output locality of the computation: all accesse=ath element i’ are
consecutive, and’ is completed element by element, row by row. However, urddlss
input and output arrays fit into the cache, the naive implaat&m has poor locality
with respect tod and B.

We analyze the naive implementation by counting the numbeache misses. We
assume a cache line size of 64 bytes, or 8 (double precismat)rfy point values, and
that V is large with respect to the cache size. To compute the fitsgy enC, we need
to access the entire first row df and the entire first column dB. Accessing a row of
A results inN/8 misses (one for each group of 8) due to the row-major storadgr,0
while accessing a column @ results in a fullNV misses, yielding a total d9/8) N
misses for the first entry i@V

To analyze the computation of the second entrg'pive first observe that the parts.af
andB that will be accessed first are not in the cache. That is, Siisamuch larger than
the cache, the first few elements of the first rondofvere in cache but were eventually
overwritten. Similarly, the first elements of the seconduouh of B were already in
cache (each element shared a cache line with its neighbbeifirst column) but also
have been overwritten. This is illustrated in Fig. 10, whstlows in gray the parts of
andB that are in cache after the first entry@fis computed. Consequently, the number
of misses involved in computing the second entry (and evebgaquent entry of),
produces alsd9/8) N misses. Therefore, the total number of misses generatduidy t



40

K 1. column M M

1. row

A B C

cache line length

Fig. 10. The state of the cache at the end of computation of the first elemeTit(sfall black
square) is shown. Areas of the input matrices marked in gray are cestulent at this point. The
next element of” to be computed is shown as small white square.

algorithm (for theN? entries inC) is (9/8) N®. In summary, there is no reuse and no
neighbor use, a problem resolved to the extent possibledgitimizations in the next
sections.

5.1 Cache Optimization

Blocking. One of the most important optimizations for MMM (and linelgebra prob-
lems in general) is blocking, as introduced in Section 4l@cKBng involves performing
the addition and multiplication operations bltocksof the original matrix, instead of
individual elements. The idea is to increase locality bytrieting the computation at
any point to work on small chunks that fit entirely into the lvacWe will also see
that blocking essentially increases reuse and neighbotheseoncepts previously pre-
sented in Section 2.4.

The compiler loop transformation that implements blockiagknown astiling [76,
13, 75]. Blocking or tiling the MMM for each level of the menyohierarchy involves
adding three more nested loops to the basic triple loop imefgation. The code for
the MMM blocked for one memory level with block si2ég follows.

/I MMM loop nest (j, i, k)
f or (i=0; i<N; i+=NB)
f or (j=0; j<M; j+=NB)
f or (k=0; k<K; k+=NB)
/I mini-MMM loop nest (i0, jO, kO)
f or (i0=i; i0<(i + NB); i0++)
for(j0=j; j0<(j + NB); jO++)
for (kO=k; kO<(k + NB); kO++)
C[i0][j0] += A[i0][k0] + B[KO][j0l;

Fig. 11 shows the data access pattern of blocking for theecalte three additional
innermost loops cause each matrix to be divided into blo€lsize Ng x Ng. Notice
the similarity in the access pattern to the naive implentemaexcept at the block level
instead of at the element level.



41

A B C

Fig. 11.Blocking for the cache: mini-MMMs.

We now analyze this version of the MMM to determine the impatthe number of
cache misses. We assume that the block size is larger thaathe line size, and for
now that several blocks can fit into the cache. This implias élscessing a block results
only in N2 /8 misses, regardless of the access sequence.

Computing the firsblock of C requires the first block row ofi, and the first block
column of B. This results in(N3/8 + N%/8)(N/Ng) cache misses. Similar to the
reasoning used in the analysis of the naive version, competich block ot” results
in the same amount of misses, and therefore, the total nuaflmisses generated by
this algorithm (for th N/N)? blocks inC) is N3 /(4N), which is significantly less
than the(9/8) N3 misses in the naive version.

We call the smaller blocks operations mini-MMMs, followif€p]. Ng is an optimiza-
tion parameter that must be chosen such that the workingfsbeanini-MMM fits
entirely into the cache. A simple translation of our assuompthat blocks from the two
input and output matrices (oworking se} fit into a fully associative cache is expressed
by the following equation3N% < C, whereCs is the cache size. ATLAS determines
Np by searching and trying different arbitrary values and ijpigkhe one that results
in the best performance.

In contrast, [75] use a model based approach, and chddgdsmsed directly on cache
parameters. Their careful examination of the data accas=rpaf the blocked MMM
reveals that the working set at a finer granularity consietg of a single element in
C' (since each element ifi' is reused completely by the innermdst loop before it
moves on to the next element), a single row{since a row is fully reused before
the program moves on to the next row), and the enfireTherefore, the following
relationship needs to holdv% + Np + 1 < C;. Thus, a good choice faVy is the
largest value that satisfies this inequality.

Blocking for MMM works because it increases cache reuse aighbor use, our guid-
ing principles discussed in Section 2. Cache reuse is inetkbecause once a block is
brought into the cache, it is used several times before bmiegnritten. Neighbor use

is increased for the input matrii, since all elements in the cache line are used before
eviction.

Typically, MMM is blocked for the L1 cache but blocking forah.2 cache may be
superior in certain cases [75].



42

An additional optimization that can be done for the cache exchange théand thej
loops, depending upon the relative sizes of thand B matrices.

Loop merging. Loop merging is not applicable to the MMM.

Buffering. Buffering (also known as copying) for MMM is applicable farge sizes.
The basic idea behind buffering is to copy tiles of the inpudl autput matrices into
sequential order in memory to minimize cache conflict migaesl TLB misses if the
matrices span multiple pages), inside each mini-MMM. THifang code illustrates
buffering. The matrix B is fully buffered at the beginninghse it is accessed in full
during each iteration of the outermadbop. Vertical panels ofl are used during each
iteration of j, and are buffered just before thdoop begins. Finally, in some cases,
it might be beneficial to copy a single tile 6f before thek loop, since a single tile
is reused by each iteration of thieloop. Note that the benefits of buffering have to
outweigh the costs, which might not hold true for very smaNery large matrices.

/I Buffer full B here
f or (i=0; i<M; i+=NB)
/I Buffer a panel of A here
for (j=0; j<N; j+=NB)
/I Copy a block (tile) of C here
f or (k=0; k<K; k+=NB)
/I mini-MMM loop nest as before (i0, jO, kO)

5.2 CPU and Register Level Optimization

We now look at optimizing the MMM for the CPU. We continue withr MMM exam-
ple from the previous section.

Blocking. Blocking for the registers looks similar to blocking for thache. Another
set of nested triple loops is added. The resulting code iastielow:

/I MMM loop nest (j, i, k)
for (i=0; i<N; i+=NB)
for (j=0; j<M; j+=NB)
f or (k=0; k<K; k+=NB)
/I mini-MMM loop nest (i0, jO, kO)
for (i0=i; i0<(i + NB); i0+=MU)
f or (j0=j; jo<( + NB); jO+=NU)
f or (kO=k; kO<(k + NB); kO+=KU)
/I micro-MMM loop nest (jOO, i00)
f or (k00=kO; k00<=(k0 + KU); kOO++)
f or (j00=j0; j00<=(0 + NU); jOO++)
f or (i00=i0; i00<=(i0 + MU); i00++)
CJi00][j00]+=A[i00][k00] * B[kOO][jO0];

Note that the innermost loop nest now has the loop dkder, this is explained later.
As Fig. 12 shows, each mini-MMM is now computed by blockingnto a sequence



43

Ng Np Np
— — —
wll ] ' O
NB v X L =
—k—> l
A B C

| |

Ny

Fig. 12. mini-MMMs and micro-MMMs (from [75]).

of micro-MMMs. Each micro-MMM multiplies anV{; x 1 block of A by al x Ny
block of B, with the output being &/;; x Ny block of C. At this level of blocking,
we have a degree of freedom in choosifgy and Ny, (The Ky parameter controls the
degree of unrolling, and is discussed soon). These paresnatest be chosen so that a
micro-MMM fits into register space (thus avoiding registeitls).

ATLAS searches over arbitrary values for these parameterhoose the ones that
result in the fastest code. In [75], with a reasoning thatrslar to the one used in
choosingN g in the previous section, selects these parameters baséa ameguality
My + Ny + (My x Ny) < Ng, whereNg is the number of data (integer or floating
point) registers. This equality is then further refined.

Locality is not the only objective of blocking for registguesce. Note that in the code
above, the micro-MMM have a loop orderkif . While this reduces output locality, it
also provides better instruction level parallelism (adl #; Ny, addition/multiplication
pairs are independent) when combined with loop unrollirsgaésed next.

Unrolling and scheduling. Loop unrolling and scheduling, as discussed in Section 4.3,
can be used to further optimize MMM. We unroll the two innestiops to get
My x Ny additions and multiplications. Note that these instruttiare of the form
C+ = AB. As mentioned in [21], such an instruction will not executdhen machines
without a fused multiply-add unit, since the addition is elegent on the multiplication,
and will cause a pipeline stall until the multiplication israpleted. Thus, it may be
beneficial to separate the addition and the multiplicatiparations here, and schedule
them with unrelated intervening instructions to minimizeghine stalls.

The k00 loop can also be unrolled completely to reduce loop overhEadcontrols the
degree of unrolling, and is chosen so that the fully unroléeg body (of thek0 loop)
still fits into the L1 instruction cache.

Scalar replacement.When the innermost loops are unrolled, each array element ap-
pears multiple times in the unrolled code. For the reasossudsed earlier in Sec-
tion 4.3, replacing array references by scalar variablasolled code enables com-
piler optimizations to work better. As the MMM has a good eustio, references to
input arrays are also replaced by first copying the value toraatic variables and then
reusing the automatic variable.



44

Precomputation of constants.Since the MMM does not have constants that can be
precomputed, this optimization does not apply.

5.3 Parameter-Based Performance Tuning

The above discussion identifies several parameters thdtecased for tuning. ATLAS
performs this tuning automatically by generating the vagaand selecting the fastest
using a search procedure.

Blocking for cache. N is the main optimization parameter used to control the block
size of the mini-MMMs. If several levels of blocking are desl, additional blocking
parameters arise.

Blocking for registers. When blocking for the registers;;, and Ny are the main

tunable parameters, and must be chosen such that the midid-Nbes not produce
register spills.Ky specifies the degree of unrolling and should be chosen as #éwrg
possible without overflowing the instruction cache.

Besides that, several other parameters can be identifiedeidormance tuning and
platform adaptation [21, 75].

5.4 Program Generation for MMM: ATLAS

The parameters shown in the previous section are only a soiadet of all the parame-
ters that can be used to tune the MMM. In theory, searchingtbeespace of all tunable
parameters will lead to the fastest code. Obviously, sugaech would take an imprac-
tical amount of time to complete due to the vast search sgdeebest approach in this
scenario is to prune the search space in a reasonable wayp aotbomate the search
over the remaining space. This in essence is the approdowéal by ATLAS [21],
which is briefly discussed in this section. In terms of theglaage previously used in
this tutorial, ATLAS generates a mini-MMM with the highestrformance, which is
then used as a kernel in a generic MMM function.

Mflop/s Compile

Execute

Measure

L1Size NB I

Detect MUY KU, MiniMMM

Hardware —DNR ATLAS xFetch ATLAS MMM il
Parameters % Search Engine %’ Code Generator

—_— _ Latency

Fig. 13. Architecture of ATLAS (from [75]).



45

Fig. 13 shows the architecture of ATLAS. When ATLAS is firsttadked on a platform,

it runs a set of micro-benchmarks to determine a set of hamlparameters, including
the L1 cache size and the number of regist¥fs These parameters are then used to
prune the originally unbounded search space to a finite oReAA& then proceeds by
searching the space of possible mini-MMMs using a feedbaog.lIn this feedback
loop, a search engine decides on the parameters that spetiiiyi-MMM, the corre-
sponding code is generated, its performance evaluatedhanakext set of parameters
is tried.

Since the search space is too large, ATLAS use®rdmogonal line searctto find

the optimal values for the set of parameters it searches @reen a functiony =
f(z1,29,...,2,) to optimize, orthogonal line search determines an appratian by
solving asequencef n 1-dimensional optimization problems, where each problem c
responds to one of the parameters. When optimizing fer, the set of optimal values
already found forz ... z;_1 are used, andeference valueare used for the remaining
parameters:; .1 ... x,. ATLAS provides the parameter sequence, and ranges and ref-
erence values for each of the parameters, using a combinattiouilt-in defaults and

the determined microarchitectural parameters.

It has been shown that a suitably designed model, based otaiéedeunderstanding
of the microarchitecture, can replace the search in ATLASn the best parameters
deterministically [75].

Discussion.ATLAS has been very successful in generating very fast MMMector
many architectures and has been widely used. In fact, ATLaS, its predecessor
PHIPAC [22], were the first efforts on automatic performathegng in the area of nu-
merical computing; as such, it raised awareness to thedsirrg difficulty of deciding
on coding choices and achieving high performance in gemerahachines with deep
memory hierarchies. As we have seen, in this case, usinggrogeneration is crucial
to efficiently evaluate the many possible choices of pararset

However, since ATLAS is based on (properly chosen) paramétes not clear how to
extend its approach to novel architectural paradigms ssefeetor instructions, multi-
core processing, or others. To date, these are not supdoyrt8@LAS. We argue that
the reason is the lack of an internal domain-specific languhgt can express all the
necessary transformations at a higher abstraction levéthvalso enables the inclusion
of new transformations. This is the approach taken by Smargkogram generator for
the domain of linear transforms discussed later in Sectién 6

5.5 Exercises

1. Mini-MMM. The goal of this exercise is to implement a fast mini-MMM tolthu
ply two squareNg x Ng matrices (Vg is a parameter), which is then used within
an MMM.

(a) Based on definitionUse your naive implementation of the MMM as mini-
MMM (code from Exercise 1 in Section 2.



46

(b) Register blockingBlock into micro MMMs with My = Ny = 2, Ky = 1.
The inner triple loop must have th& order. Manually unroll the innermost
i andj loops and schedule your code to perform alternating actditend
multiplications (one operation per line of code). Perforralar replacement
on this unrolled code manually.

(c) Unrolling. Unroll the innermosk loop by a factor of 2 and 4Ky = 2,4,
which doubles and quadruples the loop body) and again darsegdlacement.
Assume that 4 divided/.

(d) Performance plot, search for best block siPetermine the L1 data cache size
C (in doubles, i.e., 8B units) of your computer. Measure tedgrmance (in
Mflop/s) of your four codes for alNz with 16 < Nz < min(80,v/C) with
4 dividing N. Create a plot with the x-axis showingg, and y-axis showing
performance. The plot should contain 4 lines: one line fohe# the programs
(MMM by definition, register blocking, and unrolling by a fac of 2 and 4).
Discuss the plot, including answers to the following questi whichNz and
which code yields the maximum performance? What is the ptagerof peak
performance in this case?

Loop order.Does it improve if in the best code so far you switch the outesim
loop order fromijk tojik ? Create a plot to show the answer.

(e

~

(f) Blocking for L2 cacheConsider now your L2 cache instead. What is its size
(in doubles)? Can you improve the performance of your faswde so far by
further increasing the block siz&¥ g to block for L2 cache instead? Answer
through an appropriate experiment and performance plot.

2. MMM.

(@) Implement an MMM for multiplying two squar®’ x N matrices assuming
Np dividesN, blocked intoNg x Ng blocks. Use your best mini-MMM code
from Exercise 1.

(b) Create a performance plot comparing this implemematitd the implementa-
tion based on definition above for an interesting rang® dfip to sizes where
the matrices do not fit into the L2 cache). Plot the sizen thez-axis, against
the performance (in Mflop/s or Gflop/s) on theaxis.

(c) Analyze and discuss the plot.

6 DFT

In this section we describe the design and implementati@ahigh-performance func-
tion to compute the FFT. The approach we must take is diffdrem the one taken to
optimize the MMM in Section 5: we do not start with a naive ieplentation that is
transformed into an optimized form, but design the code feenatch. This is due to



47

the more complex structure of the available FFT algorithNate that, in contrast to
MMM, an implementation based on the definition of the DFT is cmmpetitive.

The first main problem is the choice of a suitable FFT algaritsince many differ-
ent variants are available that differ vastly in structlrenakes no sense to start with
the wrong FFT algorithm and optimize the implementatiom st step. In particular,
when targeting a machine with a memory hierarchy, startiegoptimization with the
iterative radix-2 FFT used in Numerical Recipes (Secti@) B. suboptimal since it re-
quireslog, (input sizg many sweeps through the input data, which results in podrecac
locality. Further, no unrolled and optimized basic blocksgd for optimal register per-
formance.

In our discussion below we design a recursive radix-4 FFTlementation. Generaliza-
tion to a mixed-radix recursive implementation is reladgva&raightforward in concept,
but technically complex. The optimization steps takencfelto a large extent the de-
sign of FFTW 2.x [9]. FFTW uses a program generator in addjtto automatically

implement optimized unrolled basic blocks [23].

In all our DFT code examples the (complex) data is assumed sidved in interleaved
complex double-precision arrays (alternating real andjimay parts of the vector el-
ements). We pass around pointers of tgoeble , and two neighboringlouble ele-
ments are one complex number. All strides are relative topdexmumbers.

6.1 Background

In this section we provide background on the DFT and FFTs. ¥j#a& these algo-

rithms using the Kronecker product formalism. We start wéktating the DFT defini-
tion from Section 2.3. For code readability we denote the sizthe input vector with

N. As usual, matrices are written ds= [ay, ¢], whereay, , are the matrix elements. An
index range fok, ¢ may be given in the subscript.

Definition. The discrete Fourier transform (DFT) of a complex input gectof length
N is defined as the matrix-vector product

Y= DFTy2x, DFTy = [w]k\,e]ogk_[<N, Wy = 6727”‘/]\].

Kronecker product formalism. We describe fast algorithms for the DFT using the
Kronecker product formalism [5]. There are several reasonssing this formalism:
First, the representation is visual and index free and hevamable by humans. Second,
it is easy to translate algorithms expressed this way djrécto code, as we shall
see later. Third, in this representation, algorithm vasaare easily obtained by both
inserting recursions into each other and manipulatingralgns tomatchthem to a
specific hardware architecture. For instance, the algostban be mapped to vector
and multicore architectures this way [26, 25].

These are also the reasons why the program generator Spipdihed in Section 6.6)
uses this formalism as its internal domain-specific languag



48

We definel,, as then x n identity matrix. The tensor (or Kronecker) product of megs
is defined as
A® B = [ale]k’Z with A= [akydk’z.

In particular,

is block-diagonal. We also introduce the iterative direchs

Ao
Ay

n—1
D= . :
i=0 E
An—l
which generalizeg,, @ A.

We visualizel, ® A below; the fourAs are shown with different shades of gray.

A

I, @ A= Q)

Now we look at the tensor produdt® I,,. This matrix also containg blocks of A, but
they are spread out and interleaved at strid€&his is best understood by visualization:
the equivalent of (1) is

AR I, = (2)

where we assume that is 4 x 4. All elements with the same shade of gray taken
together constitute ond, so the matrix again contains fodis. The pattern shows that
multiplying (2) to an input vector: is equivalent to multiplyingA to four subvectors of

x, extracted at stride 4, and writing the result into the samations.

The stride permutation matrik!’” permutes an input vectarof lengthmn as
m+j—jm+i, 0<i<m,0<j<n.

If z is viewed as am x m matrix, stored in row-major order, thefii’’™ performs a
transposition of this matrix.



49

Recursive FFT.Using the above formalism, the well-known Cooley-Tukey R#Tts
recursive form can be written as a factorization of INéT 5, matrix into a product of
sparse matrices. That is, fof = mn,

DFT,,, = (DFT,, ®1,) Dy n(Llm @ DFT,)L". 3

m

HereD,, ,, is the diagonal “twiddle” matrix defined as

—

D = diag(w?,,,wt .. w1, 4

E mn? mn

3

I
=)

J
Equation (3) computes a DFT of sizen in four steps. First, the input vector is per-
muted byL"™. Secondm DFTS of sizen are computed recursively on segments of the

vector. Third, the vector is scaled element wiselBy ,,. Lastly,n DFTs of sizem are
computed recursively at stride.

The recursively called smaller DFTs are computed similariiil the base case = 2
is reached, which is computed by definition using an addgioth a subtraction:

1 1
DFT; = L _J . (5)
In summary, (3) and (5) are sufficient to compute DFTs of eabjttwo-power sizes.
To compute DFTs of other sizes, other FFT algorithms areired(5].

Algorithms and formulas. There is a degree of freedom in applying (3) to recursively
compute a DFT, namely in factoring the given DFT input sK.eFor instance one can
factor8 — 2 x 4 — 2 x (2 x 2) using two recursive applications of (3). The complete
FFT algorithm for this factorization could then be writtesithe followingformula

DFTg = (DFTy ®14) Dy 4 (I @ (DFTy @15) Dy (I ® DFTy)L3) L5 (6)

Direct implementation. A straightforward implementation of (3) can be easily ob-
tained since the occurring matrix formulas have a direerpretation in terms of code
as shown in Table 4. The implementation of (3) would henceetiaur steps corre-
sponding to the four factors in (3).

Observe in Table 4 that the multiplication of a vector by asterproduct containing
an identity matrix can be computed using loops. The workieigfer each of then
iterations ofy = (I, ® A, )z (see (1)) is a contiguous block of sizeand the base
address is increased lybetween iterations. In contrast, the working sets of sizef
then iterations ofy = (4,, ® I,,)z (see (2)) are interleaved, leading to stridevithin
one iteration and a unit stride base update across itegation

Cost analysis.Computing the DFT using (3) requires, independent of thenson
strategyy log, (n) + O(n) complex additions angn log,(n) + O(n) complex multi-
plications.

The exact number of real operations depends on the chogenifations ofn and is at
mostsn log,(n) + O(n).



50

formula code
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)
f or (i=0;i<m;i++)
yli *n:l:i *n+n-1] =
AX[i *n:Li  *n+n-1]);

y = (AnBn)z

Yy = (I’"L ® An)m

f or (i=0;i<m;i++)
yli:n:i+m-1] =
A(X[i:n:i+m-1]);

y=(Am ® In)x

f or (i=0;i<m;i++)
yli *n:l:i *n+n-1] =
A(, x[i  *n:li  *n+n-1]);

y= (B Al

for (i=0;i<m  *n;i++)

Y= Dmnz ylil = Dmn[i]  *x[i;

f or (i=0;i<m;i++)
y=Ly"x f or (j=0;j<n;j++)
yli+m *j]=x[n  *i+];

Table 4. Translating formulas to code.denotes the input ang'the output vector. The subscript
of A and B specifies the size of the (square) matrix. We use Matlab-like notat[brs:e]
denotes the subvector ofstarting at, ending aie and extracted at stride.

Iterative FFTs. The original FFT by Cooley and Tukey [77] was not the recusilgo-
rithm (3), but an iterative equivalent and fir = 2. It can be obtained by expanding
the DFT recursively always using the factorizativn= 2 - N/2, and then rearranging
the parentheses and fusing adjacent permutations. Thitissthe iterative FFT

k
DFTy = <H(121-1 @ DFT, ®IN/21-)D§V7Z-> Ry, 7)

i=1

where theDy ; are diagonal matrices an@ly is the bit-reversal permutation [5]. Nu-
merical Recipes implements a variant of (7), shown in Se@ig8.

6.2 Cache Optimization

In this section we derive the recursive skeleton and thegtespecification for our DFT
implementation.

Blocking. Blocking a DFT algorithm is done by choosing the recursivel€g-Tukey
FFT algorithm (3) as starting point instead of the iteraffel used by the Numerical
Recipes code in Section 2.3. The block size is the choaéix m in (3), which is a
degree of freedom. We assume a radix-4 implementation Wits 4", i.e., we factor



51

N = 4-4"~1, The corresponding recursion is
DFTyn = (DFTy ®@Ign—1)Dggn1 (I @ DFTyn1)L3 . (8)

We visualize (8) below forn, = 2. We see four stages, corresponding to the four factors
in the matrix factorization.

DFTy ®I4 Dy I,®DFT, L®

stride 4
DFTyq = to (©)
stride 1

Forn > 1 our implementation will recursively apply (8) to the terid$'T,~-1 in the
right side of (8). The termBFT, are recursion leaves and not implemented using (8).
We will discuss their implementation in Section 6.3.

This recursion igight-expanded-the first stage gets recursively expanded while the
second stage uses radix-4 kernels. Right-expanded reeumgplementations have su-
perior data locality as only a small amount of temporaryaderis needed and the
second stage can be implemented in-place.

Loop merging. A naive implementation of (8) leads to a recursive functidthviour
stages (corresponding to the four matrix factors) and thussweeps through the data.
However, the stride permutatidif " is just a data reordering and thus is a candidate for
loop merging. Similarly, the twiddle factor matri?, 4»-1 is a diagonal matrix and can
be merged with the subsequent stage.

We now sketch the derivation of a recursive implementatig@®) We patrtition (8) into
two expressions as

DFTyn = ((DFT4 ®I4n_1)D4,4n_1> . ((14 ®DFT4n_1)Li"), (10)

which become two stages (instead of four) in the recursiuetian
void DFT(int N, double *Y, double *X);

that implements (8).

Forn = 2 we visualize the merging of the stride permutation with th@eent tensor
product,DFT, ®14, in (11) below. The merging of the diagonal, 4 with the adjacent
tensor producf, ® DFT,4 cannot easily be visualized.

DFT, ®I4 Dy (I4®DFT4)L}°

DFT6 = (11)




52

The first stage of (10)y = (I, ® DFTy.-1)L3" z, is handled as follows. According

to Table 4, the tensor produé¢i @ DFT,.-: alone is translated into a loop with 4
iterations. The same is true fof; ® DFT,.-1)L3"; only, as (11) shows, the input
is now read at stride but the output is still written at stride 1. This means that th
corresponding DFT function needs to have the stride as aitiaud parameter and

has to be implemented out-of-place, i:eandy need to be different memory regions.
Hence it is of the form

void DFT_rec( int N, int n, double *Y, double *X, int s)

We passi together with/V to avoid computing the logarithm.

Now the functionDFT above just becomes a special cas®Bbfl_rec and can hence
be implemented using a C macitod4() , computes: from 4™):

#define DFT(N, Y, X) DFT_rec(N, log4(N), Y, X, 1)

For N = 4, we reach the leaf of the recursion and call a base case Karation.
voi d DFT4_base( doubl e *Y, double *X, int s);

The second stagg, = (DFT4 ®14n-1)Dy 4»-1, first scales the input by a diagonal
matrix and then sweeps withl2F' T, kernel over it, applied at a stride. More precisely,
DFT, operates o, o, 4n—1, Tj19.4n—1, aNdx;3.4n—1, Wherej is the loop iteration
number.

Again, we merge these two steps, this time by replacin@i@&,s inDF T4 ® I4»-1 by
DFT4 D;, whereD; is a4 x 4 diagonal matrix containing the proper diagonal elements
from D4 4»-1. Inspection shows thdD; (as a function of the problem siz¢) is given
by

D; = diag(win, win, wit, win), 0<j<4" ™t (12)

Hence, the function implementing= (DFT4 D,)x also needs a stride as parameter,
andj to compute the elements @i;. Also, it can be in-place since it reads from and
writes to the same locations of input and output vector. ldentakes the form:

voi d DFT4_twiddle( double *Y, int s, int n, int j);

The final recursive function is given below. There are sondress multiplications by
2, required to implement arrays of complex numbers as afcdy@/ice the size) of real
numbers.

/I recursive radix-4 DFT implementation
/I compute the exponent

#i ncl ude <math.h>
#defi ne log4(N) ( i nt)(log(N)/log(4))

/I top-level call to DFT function
#defi ne DFT(N, Y, X) DFT_rec(N, log4(N), Y, X, 1)



53

/I DFT kernels
voi d DFT4_base( doubl e *Y, double *X, int s);
voi d DFT4_twiddle( double *Y, int s, int N, int j);

/I recursive radix-4 DFT function

/Il N: problem size

/I 'Y: output vector

/I X: input vector

Il s: stride to access X

void DFT_rec( int N, int n, double =+Y, double *X, int s)
{ int j

if (N==4)
/'Y = DFT_4 X
DFT4_base(Y, X, s);
el se {
II'Y = (I_4 x DFT_N/4)(L'N_4) X
for(j=0; j<4; j++)
DFT_rec(N/4, n-1, Y+(2 *(N/4) =*j), X+2 +*jxs, s x4);
II'Y = (DFT_4 x I_{N/4})(D_N,4) Y
for(j=0; j<N/4; j++)
DFT4_twiddle(Y+2 «j, N/4, n, ));

Buffering. The kerneDFT4_twiddle accesses both input and output in a stride. For
large sizesN = 4", this stride is a large two-power, which means that all elase
accessed by the kernel are mapped to the same set in the saettdd. 6). If the cache
does not have sufficient associativity, cache thrashingirscéNamely, each iteration
of the DFT4.twiddle loop has to loadl cache lines and all these cache lines get
evicted before the next iteration of tbé-T4_twiddle  loop can use the already loaded
remaining cache lines.

Buffering alleviates these problems to a certain degreeintial and final copy op-
eration introduce overheads, but all intermediate stepsdane on contiguous data,
preventing cache thrashing.

As an example, buffering is performed on the second loop@ptleceding code, lead-
ing to the following code. We assume a cache line size®tomplex numbers (= 4
doubles). (IfLS is larger than the radix size, one needs special cases fa sernr-
sion steps.) To implement buffering, we first split thdoop into N/(2 *LS) x LS
iterations. We add copying to the body of thetertiled j1 loop. Our copy operation
handles cache lines and thus data for multiple DFTs. In qdai, we copy 4 sets of
LS consecutive complex elements (4 cache lines) into a lod&bThe inner tiled2
loop performd.S DFTs on the local contiguous buffer. The large, performateggad-
ing complex stridet™ ! in the originalj loop gets replaced by a small complex stride
LS inthej2 loop at the cost of two copy operations that copy whole caictes) The
threshold parametéh controls the sizes for which the second loop gets buffered.



54

/I cache line size = 2 complex numbers (16 bytes)
# define LS 2

/I recursive radix-4 DFT function with buffering
/Il N: problem size
/I 'Y: output vector
/I X: input vector
/I 's: stride to access X
/I th: threshold size to stop buffering
void DFT_buf rec( int N, int n, double =+Y, double *X, int s, int th)
{int i j, j1, j2, k;
/I local buffer
doubl e buf(8 *LS];

if (N==4)
/I'Y = DFT_4 X
DFT4_base(Y, X, s);
el se
{ II'Y = (_4 x DFT_{N/4})(L"N_4) X
if (N > th)
for(=0; j<4; j++)
DFT_buf rec(N/4, n-1, Y+(2 *(N/4) *j), X+2 =*j=xs, s *4, th);
el se
for (j=0; j<4; j++)
DFT_rec(N/4, n-1, Y+(2 *(N/4) *j), X+2 =*j=*s, s *4);

II'Y = (DFT_4 x |_{N/4})(D_{N,4}) Y, buffered for LS
/l'j loop tiled by LS
for (j1=0; j1<N/(4 *LS); j1++)
{ Il copy 4 chunks of 2 *LS double to local buffer
for (i=0; i<4; i++)
for(k=0; k<2 *LS; k++)
buf[2 *LS*i+k] = Y[(2 *LSxjl1)+(2 =*(N/4) =*i)+K];

/I perform LS DFT4 on contiguous data
/I buf = (DFT4 Dj x I_LS) buf
for (j2=0; j2<LS; j2++)
DFT4_twiddle(buf+2 *j2, LS, n, jl * LS+j2);

/I copy 4 chunks of 2 *LS double to output
for (i=0; i<4; i++)
for(k=0; k<2 *LS; k++)
Y[(2 *LS*j1)+(2 *(N/4) +i)+k] = buf[2 * LS* i+K];



55

One can perform a similar buffering operation on the ing@or the call toDFT_rec ,
as X is accessed at a large stride. This buffering must take acgpecial case for
N =16 in DFT_rec and requires a third variant of the recursive functfl_rec .

6.3 CPU and Register Level Optimization

This section describes the design and implementation ohopgd DFT base cases (ker-
nels). We again restrict the discussion to the recursivix+&drFT algorithm. Exten-
sions to mixed-radix implementations requires differemiriel sizes, all implemented
following the ideas presented in this section. High-perfance implementations may
use kernels of up to size 64 [23, 78].

Blocking. We apply (3) to theDFT4:
DFT, = (DFTy ®1I5) Dy o(Io ® DFTy) L. (13)

As (13) is a recursive formula, an implementation based @) {4 automatically
blocked.

Unrolling and scheduling. We implement (13) according to the rules summarized in
Table 4. We aim at implementing recursion leafs. Thus the gazkds to be unrolled.
Due to the recursive nature of (13), kernels derived from) 18 automatically reason-
ably scheduled.

For DFT kernels, larger unrolled kernels lead to slightlssleperations, as more twid-
dle factors are known at optimization time and one can takiebadvantage of trivial
complex multiplications. However, larger kernels do nar@ase the available instruc-
tion level parallelism as much as in MMM, since the DFT datevflomore complicated
and imposes stronger constraints on the operation ordering

Scalar replacement.We next apply scalar replacement as described in Section 4.3
Every element in the input arrayis only referenced twice, and every location of the
output arrayy is written once. Hence, we only replace the temporary arrhy scalar
variables, but do not replace accessex amdY. Experiments suggest that this strategy
is sufficient for obtaining maximum performance. This letmthe following code for
DFT4_base . From the discussion in Section 6.2 we know that this fumclimds at
complex strides from * X and writes at unit stride teY. We obtain the following code:

/I DFT4 implementation
voi d DFT4_base( double =+Y, double =*X, int s)
{ doubl e t0, t1, t2, t3, t4, t5, t6, t7;

t0 = (X[0] + X[4 =*s));

t1 = (X[2 *s] + X[6 *s]);

t2 = (X[1] + X[4 =*s+1]);

t3 = (X[2 s+l] + X[6 =*s+1]);
t4 = (X[0] - X[4  *s]);

t5 = (X[2 *s+1] - X[6 =*s+1]);
6 = (X[1] - X[4  *s+1]);



56

t7 = (X[2 *s] - X[6 =*s]);

Y[0] = (10 + t1);
Y[1] = (2 + t3);
Y[4] = (10 - t1);
Y[5] = (t2 - t3);
Y[2] = (t4 - t5);
Y[3] = (6 + t7);
Y[6] = (14 + t5);
Y[7] = (6 - t7);

}

Precomputation of constants. The kernel DFT4 twiddle  computesy =
(DFT4 D;)x, which contains multiplication with the complex diagoriaj as defined

in (12). The entries oD; are complex roots of unity (twiddle factors) that depend on
the recursion level and the loop counterComputing the actual entries 6f; requires
evaluations ofin = andcos %" for suitable values of and NV, which requires expen-

N
sive calls to the math library. Hence these numbers shoufadzmomputed.

We introduce an initialization functiomit DFT  that precomputes all diagonals re-
quired for sizelV and stores pointers to the tables (one table for each recuesiel) in
the global variablelouble ** DN as shown below.

#define PI 3.14159265358979323846
/I twiddle table, initialized by init_ DFT(N)
doubl e *+ DN;

voi d init DFT( int N)
{ int i j, k, size_Dj = 16, n_max = log4(N);
DN = malloc( si zeof (doubl ex) * (n_max-1));

for (=1, j<n_max; j++, size_Dj * =4)
{ doubl e *Dj = DNI[j-1] = malloc(2 *si zeof (doubl e) * size_Dj);
for (k=0; k<size_Dj/4; k++)
for (i=0; i<4; i++)
{ »(Dj++) = cos(2 *Plxi=xk/size_Dj);
*(Dj++) = sin(2 =Pl i xk/size_Dj);
}
}
}

The functionDFT4_twiddle is shown below.

/I C macro for complex multiplication
#defi ne CMPLX_MULT(cr, ci, a, b, idx, s) \

{ doubl e ar, ai, br, bi; \
ar = af2 *sxidx]; ai = a[2 *S* jdx+1]; \
br = b[2 *idx]; bi = b[2 *idx+1]; \
cr = ar *br - ai *bi \
ci = ar *bi + ai *br; \



57

/I DFT4 =D_j implementation
voi d DFT4_twiddle( double =Y, int s, int n, int j)
{ doubl e t0, t1, t2, t3, t4, t5, t6, t7,
X0, X1, X2, X3, X4, X5, X6, X7;
doubl e *Dj;

/I complex multiplications from D_N
Dj = DN[n-2]+8 «j;

CMPLX_MULT(X0, X1, Y, Dj, 0, s);
CMPLX_MULT(X2, X3, Y, Dj, 1, s);
CMPLX_MULT(X4, X5, Y, Dj, 2, s);
CMPLX_MULT(X6, X7, Y, Dj, 3, s);

/I operations from DFT4

t0 = (X0 + X4);
t1 = (X2 + X6);
t2 = (X1 + X5);
t3 = (X3 + X7);
t4 = (X0 - X4);
t5 = (X3 - X7);
6 = (X1 - X5);
t7 = (X2 - X6);

Y[0] = (10 + t1);
Y[1] = (2 + t3);
Y[4+*s] = (10 - t1);

Y[4 *s+1] = (12 - t3);
Y[2*s] = (t4 - t5);
Y[2 xs+1] = (16 + t7);

Y[6+s] = (4 + t5);
Y[6 *s+1] = (16 - t7);

6.4 Performance Evaluation

We now evaluate the performance of the recursive radix-4 &&fived in this section
and compare it to the Numerical Recipes and the sequertalhrs(single core, x87)
version of FFTW 3.1.2. All implementations are run on a stngre of a 2.66 GHz In-
tel Core2 Duo, with a theoretical scalar peak performance3# Gflop/s. We compile
all implementation with the Intel C++ compiler 10.0 with apts “/O3 /QxT” to obtain
maximum optimization. The radix-4 implementation was edjilirectly from the code
listings above. The Numerical Recipes FFT implementatsoim isingle-precision and
inplace while both our radix-4 FFT and FFTW are double-fsieci and out-of-place.
This gives a slight performance advantage to the Numeriealg®s FFT implementa-
tion.

Fig. 14 shows the performance results for the three FFT im@leations. We see that
Numerical Recipes reaches about 1 Gflop/s and drops shardgQ Mflop/s when



58

the memory footprint for the problems is too large for the la2te. The radix-4 FFT

implementation we derived in this tutorial reaches aboutl@iss for problem sizes that
fit into the L2 cache. For larger sizes the performance dropsdo about 1 Gflop/s.

FFTW 3.1.2 in sequential scalar mode shows the upper bounmidotically achievable

performance when using x87 instructions and a single céif&Wrreaches about 2.5-3
Gflop/s for cache-resident sizes and 1.6 Gflop/s for outaghe sizes.

DFT on 2.66 GHz Core2 Duo (32-bit Windows XP, Single Core, x87)

performance [Gflop/s]

3.5

FFTW 3.1.2

(double-precision, out-of-place)
3.0

2.5

Recursive Radix-4 FFT
(double-precision, out-of-place)

2.0

0.5

0.0 r T T T T T T T T T T J

2 4 6 8 10 12 14 16 18 20 22 24
log,(input size)

Fig. 14.Performance results for three FFT implementations on a 2.66 GHz latePMuo. All
implementations are sequential and scalar (single core, x87). Highettés.b

Analysis of the above data can be summarized as follows.

— The recursive radix-4 FFT is twice as fast as Numerical Recfpr in-cache sizes
and about 6 times faster for out-of-cache sizes.

— The radix-4 FFT implementation reaches more than two thifdee performance
of scalar FFTW. The performance difference is mainly dueRd\W’s larger basic
block sizes (codelets), its ability to choose differenticad at different recursion
steps, and a few additional loop optimizations.

— There is still a lot of room for further improvement usingdls SSE instructions
and both cores (see Fig. 2).

In addition, our experiments show that buffering does nodpce any performance
gain in this case, since the cache associativity on the Caneiltecture is 8, which is
large enough for a radix-4 kernel.



59
6.5 Parameter-Based Performance Tuning

We now discuss the parameters in our DFT implementationdéatbe tuned to the
memory hierarchy.

Base case size$he most important parameter tuning is the selection of bases. To
allow for multiple base casd3FT_base andDFT _twiddle , the program structure
must become more complex, as a data structure describimgahesion and containing
function pointers to the appropriate kernels replaces wte garameterdN andn in
DFT_rec . The resulting program would be very similar to FFTW 2.x.

After this infrastructural change the system can apply amgfionDFT_twiddle in
the second stage of the recursion and any fundiiéii_base as recursion leaf. The
tuning process needs to find for each recursion step the kaghel size. FFTW uses
both a cost estimation and runtime experiments based omdgmaogramming to find
good parameter choices [10]. Showing the full implemeateits beyond the scope of
this tutorial.

Threshold for buffering. The second parameter decides the sizes for which buffering
should be applied. This depends on the cache size of the tagghine, as buffering
only becomes beneficial for problem sizes that are not residehe L2 cache.

Buffer size. Finally, we need to set the buffer size based on the cachesitneeof the
target machine to prevent cache thrashing. The cache lirecan be either looked up
or found experimentally.

6.6 Program Generation for DFT: Spiral

Spiral [7] is a program generator for linear transformsah generate optimized fixed-
size and variable-size code for the DFT, the Walsh-Hadarrardform (WHT), the
discrete cosine and sine transforms, finite impulse regp@rR) filters, the discrete
wavelet transform, and others. Spiral builds on the Kroeepkoduct framework for the
DFT, described in Section 6.1, but extends it to the wholealorof linear transforms.
Further, Spiral automates the optimization process @dlin Sections 6.2—6.5 as well
as many other optimizations including various forms of peliaation [54, 26, 79, 80].
The fastest FFT implementation shown in Fig. 2 is generasgtyuSpiral.

In contrast to ATLAS, Spiral is not based on searching a patarized space, but on a
domain-specific language (DSL) that enables the enumaratid systematic optimiza-
tion of algorithms. More specifically, there are two key isleaderlying Spiral:

1. Mathematical, structural, declarative DSSpiral uses a DSL to describe algo-
rithms. The DSL is called SPL [81] and is directly derivednfraghe transform
domain: it is precisely (an extension of) the Kronecker falism described in
Section 6.1. The language describes only the structuregofitims and is hence
declarative. This property enables structural algorithminsizations including par-
allelization that is not practical to perform on C code.



60

2. Optimization through rewritingSpiral uses rewriting systems [82] for both the gen-
eration of alternative algorithms and the structural ojtation of algorithms at a
high level of abstraction. The rewriting rules for the fomaee divide-and-conquer
algorithms specified as in (3) and for the latter, they aredmmatrix identities.

Architecture. The input to Spiral is a formally specified transform (for tarsce,
DFT3s4); the output is a highly optimized C program implementing transform.
These highly optimized programs may use language extensiosoftware libraries to
access special machine features like multiple cores or SW@or instructions. We
show the architecture of Spiral in Fig. 15 and discuss itwelo

DSP transform (user specified)

|

Algorithm Formula Generation controls

Level Formula Optimization

algorithm as formula
in SPL language

Implementation Implementation controls -§
~f——
Level Code Optimization 3
C/Fortran
implementation
Evaluation Compilation

L I performance
evel Performance Evaluation

|

optimized/adapted implementation

Fig. 15.The architecture of Spiral (from [7]).

— Algorithm level.This stage is responsible for generating and optimizingrétyns
for the specified transforms.

e Formula generationA transform like DFT3g4 is considered to be a non-
terminal. Spiral usebreakdown rulego describe recursive algorithms for lin-
ear transforms. For example, (3) and (7) are breakdown exigessing larger
DFTs in terms of smaller DFTs. Base cases terminate the siecurfor in-
stance, (5) is the DFT base rule.

A rewriting system recursively applies breakdown ruleshm $pecified trans-
form to produce alternative algorithms represented as S@tessions, also
called formulas.

e Formula optimizationFormulas are structurally optimized, also using a rewrit-
ing system. Loop fusion is performed using rewriting ruldsch essentially
perform the same reasoning and restructuring as descritfgeldtion 6.2. The



61

loop fusion by rewriting requires the extension of SPL to arenpowerful
language called’-SPL [24]. Further, rewriting is used for various forms of
parallelization including the efficient mapping to mulgégbrocessor cores or
SIMD vector instructions. The next section will provide raatetails on this
topic.

— Implementation leveBpiral contains a special-purpose compiler that trarsfate
mulas into code. The compiler is based on (an extension d&feTa Moreover, it
performs all kernel-level optimizations described in 88t6.3. Depending upon
an unrolling threshold, subformulas smaller than the tihokbare treated as ker-
nels, while larger formulas are implemented using loops.

— Evaluation levelThis stage is responsible for compiling and measuring théme
of the generated code.

— Search.The measured runtime guides Spiral in picking a new cangliftatmula
by changing the breakdown of the non-terminal. The feedhzmk is guided by a
search strategy, usually a form of dynamic programming.mb& purpose of the
search is adaptation to the platform’s memory hierarchy.

Structural optimization through rewriting. A core component of Spiral’s optimiza-
tion process is the structural optimization of formulasngsa rewriting system. As
briefly discussed above, two major optimization goals ateesed through rewriting:

1) loop merging [24], and 2) the mapping of algorithms to pakarchitectures like

multicore CPUs or SIMD vector extensions [54, 26]. Loop nigggds beyond the scope
of this tutorial as it requires the introduction of a new laage,>’-SPL. Thus, we only

briefly discuss the mapping to parallel architectures.

Analysis of the access pattern of tensor products showséhntin tensor products can
be mapped very well to some architectures but only poorlyhers. As example, in (3)
the construct

I, ® DFT, (14)

has a perfect structure fen-way parallel machines with either shared or distributed
memory. However, implementing it with SIMD vector instriacts introduces consid-
erable overhead [54]. Similarly, the construct

DFT,, ®I, (15)

has a perfect structure farway vector SIMD architectures. However, implementing
it on shared memory machines leads to false sharing, whildistnbuted memory
machines tiny messages would be required, which degradtsmpance.

Using algebraic identities [53] one can change the streadfiformulas. For instance,
the identity
DFT,,®I, = L"" (I, ® DFT,,)L'" (16)

replaces a vector formula by a parallel formula and intreduevo stride permutations.
Spiral uses a rewriting system to perform formula manipoiet like (16), using a tag-

ging mechanism to steer the manipulation toward the finahéda optimized for a
certain architecture. Spiral’s rewriting system considtiree main components.



62

— Tagsencode target architecture types and parameters. Thegicdngh-level in-
formation about the target architecture. For instance;abpses the tags “vée)”
for SIMD vector extensions(encodes the vector length of the architecture) and
“smp(p, )" for shared memory(is the number of processors andhe length of
cache lines).

— Base casedescribe formula constructs that are guaranteed to be rdaffigently
to the target hardware. Spiral uses special operator tariarencode base cases.
For instance, a-way parallel base case is denoted by the tagged operatdr
A, is anyn x n matrix expression.

— Rewriting rulesencode formula manipulation identities, but in additionék” the
target machine and thus deduce the “right” parameters totitles with degrees
of freedom. For instance, the identity (16) is translated the rewriting rule

A @I, — L (L@ (I, ® Ap)) L™
(I @) (Inp )

smp(p, u) smp(p, i) smp(p,p)

This rule has the additional knowledge of the target systgmdcessor count, and
utilizes this knowledge when applying the helper identity

Imn =1n ® I’n-

The stride permutations;™ and L]*" will be handled by further rewriting.

m

For every type of parallelism, these three components atecatb Spiral to enable the
corresponding structural optimization. In addition, gvelass of target machines may
require a small extension of the SPL compiler to translagged operators into target
code. For instancegy)” will be translated into OpenMP parallel for loops, when@pi
generates shared memory code using OpenMP.

Discussion.Spiral fully automates the process of optimizing lineansfarms for a
large class of state-of-the-art architectures. The coderrates is competitive with
expertly hand-tuned implementations and often outpergaimese. The key is Spiral’'s
domain-specific, declarative, mathematical languagedorilee algorithms. Spiral’s al-
gorithm (breakdown rule) database contains the algorittkmowledge of more than a
hundred journal papers on transform algorithms. Spiraligriting system is the key to
structural optimization and parallelization of algoritbrwVith this approach it is possi-
ble to re-target Spiral to new parallel platforms. So far&@uccessfully generated (at
least prototypical) fast implementations for SIMD vectatemsions, multicore CPUs,
cluster computers, graphics processors (GPUs), and th&Eg@rocessor. In addition,
Spiral generates hardware designs for field-programmeadiie grrays (FPGAs), and
hardware-software partitioned implementations.

While Spiral focuses on transforms, the basic principlesdyihg it may be applicable
to other numerical problem domains.



63
6.7 Exercises

1. WHT: Operations count. The Walsh-Hadamard transform (WHT) is related to the
DFT but has a simpler structure and simpler algorithms. ThetWatefined only
for 2-power input sizesv = 2™, as given by the matrix

WHTy» = DFTs @ DFT, ®. .. ® DFT,,

n factors

whereDFTs is as defined in (5).

(@) How many entries of the WHT are zeros and why? Determinentimsber
of additions and the number of multiplications required wltemputing the
WHT by definition.

(b) The WHT of an input vector can be computed iteratively aursively using
the following formulas:

n—1
WHTon = [[ (In-i-+ @ DFTy ®1:)  (iterative) (17)
=0

WHTgn = (DFTy ®In-1)(lo ® WHT,.-1)  (recursive) (18)

(c) Determine the exact operations counts (again, additaomd multiplications
separately) of both algorithms. Also determine the degfeeuse as defined
in Section 2.1.

2. WHT: Implementation.
(a) Implement a recursive implementation of the WHT basedL8i (

(b) Implement the triple loop (iterative) version of the WH3ing (17). Create a
performance plot (size versus Mflop/s) for si2és22° comparing the iterative
and the recursive versions. Discuss the plot.

(c) Create unrolled WHTSs of sizes 4 and 8 based on the recUMWE algorithm.
(The number of operations should match the cost computedencise 1c on
page 63).

(d) Now implement recursive radix-4 and radix-8 impleméots of the WHT
based on the formulas

WHT,. = (WHT ®Ipn-2)(I4 ® WHTyn-2) (radix-4)
WHTyn = (WHTg ®Ipu-3)(Is © WHTgu-3) (radix-8)

In these implementations, the left hand side WHT (of size 4)ash®uld be
your unrolled kernel (which then has to handle input datasitiee) called in
a loop; the right hand side is a recursive call (also calledllimop). Further, in
both implementations, you may need one step with a differadtik to handle
all input sizes.



64

Measure the performance of both implementations, agaisifes2'—22° and
add it to the previous plot (four lines total).

(e) Try to further improve the code or perform other interegsexperiments. For
example, what happens if one considers more general digtgibased on

WHT3» = (WHTzi ®Izn—i)([21? & WHTQH—i)

The unrolled code could be the WHT on the left hand side of tlew@lequa-
tion. Alternatively, one could run a search to find the bedix@n each step
independently.

7 Conclusions

Writing fast libraries for numerical problems is difficulténequires a thorough under-
standing of the interaction between algorithms, softwanel, microarchitecture. Look-
ing ahead, the situation is likely to get worse due to themneshift to parallelism in
mainstream computing, triggered by the end of frequenclirgcaNe hope this guide
conveys the problem, its origin, and a set of basic methousite fast numerical code.

However, problems also open research opportunities. ;dase the problem is the
need to automate high performance library developmentifiawdi challenge that, in
its nature, is at the core of computer science. To date tlisl@m has been attacked
mostly by the scientific computing and compiler community ¢he list of successes is
still short. We believe that other areas of computer sci@eesl to get involved, includ-
ing programming languages, and in particular domain-$igeleinguages, generative
programming, symbolic computation, and optimization arathine learning. For re-
searchers in these areas, we hope that this tutorial cae asran entry point to the
problem and the existing work on automatic performancentni

Acknowledgment

This work was supported by DARPA through the DOI grant NBC5@09 and the
ARO grant W911NF0710416, by NSF through awards 0325687 a@@386, and by
an Intel grant.

References

1. Moore, G.E.: Cramming more components onto integrated circuitadiRgs in computer
architecture (2000) 56-59

2. Meadows, L., Nakamoto, S., Schuster, V.: A vectorizing, softwapelining compiler for
LIW and superscalar architecture. In: Proceedings of Risc. (1992)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

65

Group, S.S.C.: SUIF: A parallelizing & optimizing research compil&chnical Report
CSL-TR-94-620, Computer Systems Laboratory, Stanford Uritygfiglay 1994)

. Franke, B., O'Boyle, M.F.P.: A complete compiler approach to-gat@llelizing C programs

for multi-DSP systems. IEEE Trans. Parallel Distrib. S§&3) (2005) 234-245

. Van Loan, C.: Computational Framework of the Fast Fourier Toams SIAM (1992)
. Press, W.H., Flannery, B.P., A., T.S., T., V.W.: NumericatiRes in C: The Art of Scientific

Computing. 2nd edn. Cambridge University Press (1992)

. Ruschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso Sihger, B.W., Xiong, J.,

Franchetti, F., G&¢, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SRL:
Code generation for DSP transforms. Proceedings of the BEER (2005) 232—-275 Special
issue on Program Generation, Optimization, and Adaptation.

. Website: Spiral (199&)ttp://www.spiral.net .
. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architectar the FFT. In:

Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal ProcesdiGg$SP). Volume 3.
(1998) 1381-1384

Frigo, M., Johnson, S.G.: The design and implementation of FET®8ceedings of the
IEEE 93(2) (2005) 216-231 Special issue on Program Generation, OptimizatidnAdap-
tation.

Website: FFTWhttp://www.fftw.org

Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplicafAME work-
ing note 9. Technical Report TR-2002-55, The University of Texasuatin, Department of
Computer Sciences (Nov. 2002)

Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algetotiv@re (ATLAS). In
Proc. Supercomputing. (1998)

Moura, J.M.F., Bschel, M., Padua, D., Dongarra, J.: Scanning the issue: Spesial @
program generation, optimization, and platform adaptation. Proceedfitiys IEEE, special
issue on Program Generation, Optimization, and Adapt&8gp) (2005) 211-215

Bida, E., Toledo, S.: An automatically-tuned sorting library. SofeéwBractice and Experi-
ence37(11) (2007) 1161-1192

Li, X., Garzaran, M.J., Padua, D.: A dynamically tuned sortingfarIn: Proc. Int'l Sym-
posium on Code Generation and Optimization (CGO). (2004) 111-124

Im, E.J., Yelick, K., Vuduc, R.: Sparsity: Optimization framewfwksparse matrix kernels.
Int’l J. High Performance Computing Applicatioa$(1) (2004) 135-158

Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet,udlu¥, R., Whaley, C., Yelick,
K.: Self adapting linear algebra algorithms and software. Proceedinde 6EEE 93(2)
(2005) 293—-312 Special issue on Program Generation, Optimizatididaptation.
Website: BeBORttp://bebop.cs.berkeley.edu/

Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A I|brary of autotizally tuned sparse
matrix kernels. In: Proc. SciDAC. Volume 16 of Journal of Physicenférence Series.
(2005) 521-530

Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimizatfoftware and the
ATLAS project. Parallel Computing7(1-2) (2001) 3-35

Bilmes, J., Asanogj K., whye Chin, C., Demmel, J.: Optimizing matrix multiply using
PHIPAC: a Portable, High-Performance, ANSI C coding methodologyPtoc. Int'l Con-
ference on Supercomputing (ICS). (1997) 340-347

Frigo, M.: A fast Fourier transform compiler. In: Proc. Pragming Language Design and
Implementation (PLDI). (1999) 169-180

Franchetti, F., Voronenko, Y.{Bchel, M.: Formal loop merging for signal transforms. In:
Proc. Programming Language Design and Implementation (PLDIP52815-326
Franchetti, F., Voronenko, Y.UBchel, M.: FFT program generation for shared memory:
SMP and multicore. In: Proc. Supercomputing. (2006)



66

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.
44,
45,
46.

Franchetti, F., Voronenko, Y.{IBchel, M.: A rewriting system for the vectorization of signal
transforms. In: Proc. High Performance Computing for Computati8oi@nce (VECPAR).
(2006)

Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Orti, Bh,d@Geijn, R.: The science
of deriving dense linear algebra algorithms. ACM Trans. on Mathem&iofiware31(1)
(2005) 1-26

Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geij,: RELAME: Formal linear
algebra methods environment. ACM Trans. on Mathematical Soft24g (2001) 422—-455
Quintana-Orti, G., Quintana-Orti, E.S., van de Geijn, R., Van Z&, Ehan, E.: Program-
ming algorithms-by-blocks for matrix computations on multithreaded arctoites, submit-
ted for publication

Baumgartner, G., Auer, A., Bernholdt, D.E., Bibireata, A., @ifalla, V., Cociorva, D., Gao,
X., Harrison, R.J., Hirata, S., Krishanmoorthy, S., KrishnanL8m, C.C., Lu, Q., Nooi-
jen, M., Pitzer, R.M., Ramanujam, J., Sadayappan, P., SibiryakovSynthesis of high-
performance parallel programs for a class of ab initio quantum chemigidels. Proceed-
ings of the IEEED3(2) (2005) 276—292 Special issue on Program Generation, Optimization
and Adaptation.

Czarnecki, K., Eisenecker, U.: Generative Programming: disthTools, and Applications.
Addison-Wesley (2000)

Lammel, R., Saraiva, J., Visser, J., eds. &immel, R., Saraiva, J., Visser, J., eds.: Generative
and Transformational Techniques in Software Engineering, Int'l @@amSchool, GTTSE
2005, Braga, Portugal, July 4-8, 2005. Revised Papers. Volumg dfléecture Notes in
Computer Science., Springer (2006)

Rischel, M.: How to write fast code.http://www.ece.cmu.edu/ ~pueschel/
teaching/18-645-CMU-spring08/course.html (2008) Course 18-645, Electri-
cal and Computer Engineering, Carnegie Mellon University.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: thimbion to algorithms. MIT
Press, Cambridge, MA, USA (2001)

Demmel, J.W.: Applied numerical linear algebra. SIAM (1997)

Tolimieri, R., An, M., Lu, C.: Algorithms for discrete Fourier traoshs and convolution.
2nd edn. Springer (1997)

Hennessy, J.L., Patterson, D.A.: Computer Architecture: An@asive Approach. Morgan
Kaufmann (May 2002)

Bryant, R.E., O'Hallaron, D.R.: Computer Systems: A ProgransiPerspective. Prentice
Hall (2003)

Strassen, V.. Gaussian elimination is not optimal. Numerische Matte@#3) (1969)
354-356

Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic pesgions. Journal
of Symbolic Computatio® (1990) 251-280

Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hamling, S., Henry, G., Heroux, M.,
Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K.al&fy R.C.: An updated
set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. orniidmatical Software
28(2) (2002) 135-151

Anderson, E., Bai, Z., Bischof, C., Blackford, S., DemmelDbngarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, DPABK Users’ Guide. 3rd
edn. SIAM, Philadelphia, PA (1999)

Website: ATLAShttp://math-atlas.sourceforge.net/ .

Website: Goto BLASittp://www.tacc.utexas.edu/general/staff/goto/

Website: LAPACKhttp://www.netlib.org/lapack/

Website: ScaLAPACHttp://www.netlib.org/scalapack/



47.

48.
49.

50.

51.

52.

53.

54.

55.

56.
57.
58.

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

69.

70.

71.

72.
73.

67

Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Deninde, Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., WhaRe€.: ScaLAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philada]|##A (1997)
Website: PLAPACKhttp://www.cs.utexas.edu/users/plapack/ .
Chtchelkanova, A., Gunnels, J., Morrow, G., Overfelt, J., darGeijn, R.: Parallel im-
plementation of BLAS: General techniques for level 3 BLAS. Conawye Practice and
Experienced(9) (1997) 837-857

Website: FLAMEnttp://www.cs.utexas.edu/users/flame/

Johnson, S.G., Frigo, M.: A modified split-radix FFT with fewer mdhlc operations. IEEE
Trans. Signal Processirid(1) (2007) 111-119

Nussbaumer, H.J.: Fast Fourier Transformation and Convolétigorithms. 2nd edn.
Springer (1982)

Johnson, J.R., Johnson, R.W., Rodriguez, D., Tolimieri, Rmethodology for designing,
modifying, and implementing FFT algorithms on various architectures. ultrSystems
Signal Processing(4) (1990) 449-500

Franchetti, F., Bschel, M.: Short vector code generation for the discrete Fouriesftran.
In: Proc. IEEE Int'l Parallel and Distributed Processing Symposil?b@S). (2003) 5867
Bonelli, A., Franchetti, F., Lorenz, J.iigchel, M., Ueberhuber, C.W.: Automatic perfor-
mance optimization of the discrete Fourier transform on distributed meramputers.
In: Proc. Int'l Symposium on Parallel and Distributed Processing appliéations (ISPA).
(2006)

Website: FFTPACHKttp://www.netlib.org/fftpack/

GNU: GSLhttp://www.gnu.org/software/gsl/ .

Mirkovi¢, D., Johnsson, S.L.: Automatic performance tuning in the UHFFT rijbran:
Proc. Int'l Conf. Computational Science (ICCS). Volume 2073 of ISNCSpringer (2001)
71-80

Website: UHFFhttp://www2.cs.uh.edu/ ~mirkovic/fft/parfft.htm

Website: FFTHhttp://www.ffte.jp .

Website: ACMLhttp://developer.amd.com/acml.jsp .

Website: Intel MKL http://www.intel.com/cd/software/products/
asmo-na/eng/307757.htm

Website: Intel IPP http://www.intel.com/cd/software/products/
asmo-na/eng/perflib/ipp/302910.htm .

Website: IBM ESSL and PESSIhttp://www-03.ibm.com/systems/p/
software/essl.html

Website: NAGhttp://www.nag.com/

Website: IMSLhttp://www.vni.com/products/imsl/ .

Hill, M.D., Smith, A.J.: Evaluating associativity in CPU caches. |EEBNE. Comput.
38(12) (1989) 1612-1630

Intel Corporation: Intel 64 and IA-32 Architectures OptimizationdRefice Manual. (2007)
http://www.intel.com/products/processor/manuals/ind ex.htm .
Advanced Micro Devices (AMD) Inc.: Software Optimization Guide AMD Athlon 64
and AMD Optero Processors. (200Bitp://developer.amd.com/devguides.

isp .

GNU: GCC:optimization optionshttp://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html

Intel: Quick-reference guide to optimization with intel compilers verdion http://
cache-www.intel.com/cd/00/00/22/23/222300 \-222300.pdf

Intel: Intel VTune

Microsoft: Microsoft Visual Studio



68

74. GNU: Gnu gprof manuddttp://www.gnu.org/software/binutils/manual/
gprof-2.9.1/html \-mono/gprof.html

75. Yotov, K., Li, X., Ren, G., Garzaran, M.J., Padua, D., Pind&li,Stodghill, P.: Is search
really necessary to generate high-performance BLAS? Proceeatfitigs|EEE93(2) (2005)
358-386 Special issue on Program Generation, Optimization, and Aidapta

76. Wolfe, M.: lteration space tiling for memory hierarchies. In: SIAMnerence on Parallel
Processing for Scientific Computing. (1987)

77. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculatibnomplex Fourier
series. Math. of Computatidl® (1965) 297-301

78. Ruschel, M., Singer, B., Xiong, J., Moura, J.M.F., Johnson,adu@, D., Veloso, M., John-
son, R.W.: SPIRAL: A generator for platform-adapted libraries ohaigrocessing algo-
rithms. Int'l Journal of High Performance Computing Applicatidi@1) (2004) 21-45

79. D’Alberto, P., Milder, P.A., Sandryhaila, A., Franchetti, F., Hb€., Moura, J.M.F.,#schel,
M., Johnson, J.: Generating FPGA accelerated DFT libraries. lie: Bganposium on Field-
Programmable Custom Computing Machines (FCCM). (2007)

80. Milder, P.A., Franchetti, F., Hoe, J.C.udthel, M.: Formal datapath representation and

manipulation for implementing DSP transforms. In: Proc. Design Automationference
(DAC). (2008)

81. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A égeggand compiler for DSP
algorithms. In: Proc. Programming Language Design and ImplememtéRioDI). (2001)
298-308

82. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Auté@taReasoning. Vol-
ume 1. Elsevier (2001) 535-610



