
CHAPTER 6

Compiling for Superscalar

Processors

6.1 INTRODUCTION

Superscalar processors fetch, decode, and execute more than one instruction

per cycle with duplicated decode/issue units, functional units, and datapaths.

In order for the full performance to be extracted from these processors, tech-

niques must be used to minimize the hardware stalls caused by the sequen-

tiality between instructions. As the pipelining depth and the instruction issue

rate increases, these stalls become more costly. As a result, it has become

increasingly important for the compiler for superscalar processors to minimize

sequentiality among instructions.

Traditionally, optimizing compilers improve program execution speed by

reducing unnecessary instruction execution [1]. Figure 6.1 shows an overview

of such a traditional optimizing compiler for scalar processors. The compiler

translates high level source code into an intermediate representation. The in-

termediate code is transformed by optimization algorithms of various levels of

sophistication to improve the execution frequency. Local optimization algo-

rithms optimize within code segments where execution neither enter nor exit

the middle of the segment. Global optimizations optimize the entire function

or subroutine body. Loop optimization exploits the fact that the loop body

1

2 Compiling for Superscalar Processors Chap. 6

Source Code

Intermediate
Code

Front-end
Compiler

Code Generator
register allocation

code scheduling

code generation

Machine Code

Classic Opt.

local opt.

global opt.
loop opt.

Figure 6.1 A traditional scalar compiler.

tend to execute multiple times whenever execution reaches it. All these opti-

mization algorithms keep memory data and intermediate computation results

in high speed processor registers. As a result, they reduce the program exe-

cution cycles spent waiting for the memory system and performing redundant

computation. While this model of optimization will remain important to the

performance of future microprocessors, the rapidly increasing hardware paral-

lelism demands parallelization techniques that have been missing from most

traditional compilers.

The code generation phase of traditional compilers translates intermediate

code into machine code. The intermediate code usually assumes an in�nite

number of virtual registers to simplify the task of code optimization. During

code generation, these virtual registers must be folded by a register allocation

algorithm into the physical registers provided in the instruction set architecture

of the processor. To better use the instruction pipeline of scalar processors,

the code generator usually performs some limited instruction scheduling to �ll

load and branch delay slots. The code generation phase ends with writing

actual machine code to the output �le.

Sec. 6.2 Basic block compilation 3

Source Code

Intermediate
Code

Front-end
Compiler

Code Generator
register allocation

code scheduling

code generation

Machine Code

Input Data

Profiler

Scope

Enlargement

Dependence

Removal Opt.

Classic Opt.

Figure 6.2 A generic superscalar compiler.

Compared to traditional scalar processors, superscalar processors impose

additional responsibility on the compiler. The quality of compiler paralleliza-

tion techniques can potentially make an order of magnitude di�erence in pro-

gram execution performance for superscalar processors. With so much at stake,

the industry is moving to incorporate parallelization techniques in their com-

pilers. Figure 6.2 shows an overview of a compiler for a superscalar processor.

The dependence removal optimizations transform the intermediate represen-

tation to enhance the parallelism among instructions. The scope enlargement

algorithm, facilitated by the pro�ler, allows the optimization algorithms to

e�ciently handle code with frequent branches. The scope enlargement algo-

rithm also implicitly enhances the e�ectiveness of code scheduling in the code

generator. The objective of the chapter is to introduce the major concepts of

dependence removal optimizations, scope enlargement, and code scheduling.

6.2 BASIC BLOCK COMPILATION

A basic block is a sequence of instructions where execution can only enter

from a unique entrance point (top) and exit from a unique exit point (bot-

tom). Whenever the execution reaches a basic block, it will traverse through

4 Compiling for Superscalar Processors Chap. 6

(i1)
(i2)
(i3)
(i4)
(i5)
(i6) L0:

load
mov
mov
mov
beq
add

// avg
// count
// weight

(i7)
(i8)
(i9)
(i10)
(i11)
(i12)

L1:
L2:

load
bge
sub
br
add
load

// ptr->wt

(i13)
(i14)
(i15)
(i16)
(i17)

L3:

L4:

bne
beq
div
store

r1,
r7,
r2,
r3,
L3,
r2,

L0,
L4,
r7,
_avg

_ptr
0
0
0
r1,
r2,

0
1

r4,
L1,
r3,
L2
r3,
r1,

0[r1]
r4,
r3,

r3,
4[r1]

0
r4

r4

r1,
r2,
r3,
r7

0
0
r2

avg = 0;
weight = 0;
count = 0;
while(ptr != NIL) {
 count = count + 1;

}
if(count != 0)
 avg = weight/count;

if(ptr->wt < 0)
 weight = weight - ptr->wt;
else
 weight = weight + ptr->wt;
ptr = ptr->next;

(a) (b)

Figure 6.3 Code segment, (a) C source (b) intermediate code.

all the instructions before leaving at the bottom. Identifying basic blocks is

an important functionality in the compilation process for both scalar and su-

perscalar processors. Local optimizations operate within each basic block and

thus require the knowledge of basic block boundaries. Global and loop opti-

mizations are facilitated by the knowledge of control and data
ow information

among basic blocks. Code scheduling algorithms rely on basic block informa-

tion to derive the constraints imposed by branches and other control transfer

instructions. In this section, we will focus on local compiler optimization and

scheduling algorithms that apply within basic blocks.

The C code segment shown in Figure 6.3(a) will be used in this chapter

to illustrate the compilation algorithms. This code segment traverses a linked

list and accumulates the absolute value of each element's weight into variable

weight. After visiting all the elements, the code computes the average weight of

elements in the list. During compilation, the compiler generates intermediate

code for the source code. The intermediate code is shown in Figure 6.3(b).

The intermediate code is based on a load-store processor model and its format

is opcode destination, source1, source2 where the number of source operands

depends on the opcode.

6.2.1 Basic block construction

Figure 6.4 shows a generic algorithm for identifying basic blocks from a se-

quence of intermediate code instructions, referred to as operations in the al-

gorithm. The basic idea is to �nd all the possible entry and exit points of

the instruction sequence. An entry point is the �rst instruction of the se-

quence, the target of a control transfer instruction, or the instruction after a

Sec. 6.2 Basic block compilation 5

// Find basic block entry points
for (oper = operation list; oper != NULL; oper = oper->next) f

if (FirstOper(oper))
SetEntry(oper);

else if (TargetOfBranch(oper))
SetEntry(oper);

else if (PrevOperIsBranch(oper))
SetEntry(oper);

g
// Add operations to basic blocks
for (oper = operation list; oper != NULL; oper = oper->next) f

if (IsEntry(oper))
bb = NewBB();

AddOper(bb,oper);
g

Figure 6.4 A generic basic block recognition algorithm.

control transfer instruction. These entry and exit points de�ne basic block

boundaries. The output of the algorithm is a list of all the basic blocks thus

identi�ed. Instructions are inserted sequentially into the basic block to which

they belong.

6.2.2 Dependence graph construction

Dependences represent constraints in ordering instructions. These constraints

arise due to register accesses (register dependences), memory accesses (memory

dependences), and control transfers (control dependences). They are expressed

in a dependence graph. Each node in the dependence graph represents an

instruction and each arc an ordering constraint between a pair of instructions.

An arc from instruction A to instruction B speci�es that A must be executed

before B.

There are three types of register data dependences in general, as illus-

trated in Figure 6.5.

� Data
ow dependency: the destination register of A is the same as one

of the source registers of C, and C is subsequent to A. In this case,

a subsequent instruction consumes the execution result of a previous

instruction.

� Data anti-dependency: one of the source operands of C is the same as the

6 Compiling for Superscalar Processors Chap. 6

A r2 (r1)[0]
B r3 (r1)[1]
C r2 r2 + r3
D r3 (r1)[2]

Figure 6.5 A simple code example to illustrate register data

dependences.

destination register of D, and D is subsequent to C. (C should receive

result of B. However, if D is executed too soon, C may get execution

result of D, which is too new.) In this case, a subsequent instruction

overwrites one of the source registers of a previous instruction.

� Data output dependency: the destination register of B is the same as

the destination register of D, and D is subsequent to B. In this case, a

subsequent instruction overwrites the destination register of a previous

instruction.

A generic register dependence graph construction algorithm is shown in

Figure 6.6. Register dependence arcs are created in two passes. The �rst

pass scans the instruction sequence forward to create the
ow and output

dependences. The second phase scans the instructions backwards to create

the anti-dependence arcs. A register de�nition table is used to record for each

register the latest instruction processed thus far that writes into the register

as its destination operand.

During the forward pass, for each new instruction encountered, the algo-

rithm looks up the register de�nition table to identify the latest instructions

that write into its source operands. Register
ow dependence arcs are drawn

from these instructions to the current instruction. Similarly, an output depen-

dence arc is added from the latest instruction that writes into the destination

register of the current instruction to the current instruction

During the backward pass, the instructions are visited in the reverse order.

For each new instruction encountered the algorithm checks the register de�ni-

tion table to identify the latest instructions to write into its source operands.

Since the instructions are visited in the reverse order, these are actually the

instructions to write into the source operands in the nearest future according

to the original program order. Register anti-dependence arcs are created from

these writes to the current instruction.

Sec. 6.2 Basic block compilation 7

// Construct Register Dependence Graph for a basic block

ClearRegisterDe�nitions();
// Draw forward register dependence edges
for (oper = FirstOp(bb); oper != NULL; oper = oper->next) f

src1 = OperSrc1(oper);
src2 = OperSrc2(oper);
dest = OperDest(oper);

// Register Flow Dependences
if (IsRegister(src1) && PrevDe�ned(src1))

AddFlowDepArc(De�ningOp(src1),oper);

if (IsRegister(src2) && PrevDe�ned(src2))
AddFlowDepArc(De�ningOp(src2),oper);

// Register Output Dependences
if (IsRegister(dest) && PrevDe�ned(dest))

AddOutputDepArc(De�ningOp(dest),oper);

De�neRegister(oper,dest);
g

ClearRegisterDe�nitions();

// Draw backward register dependence edges
for (oper = LastOp(bb); oper != NULL; oper = oper->prev) f

src1 = OperSrc1(oper);
src2 = OperSrc2(oper);
dest = OperDest(oper);

// Register Anti-Dependences
if (IsRegister(src1) && PrevDe�ned(src1))

AddAntiDepArc(De�ningOp(src1),oper);

if (IsRegister(src2) && PrevDe�ned(src2))
AddAntiDepArc(De�ningOp(src2),oper);

De�neRegister(oper,dest);
g

Figure 6.6 A generic basic block register dependence graph

construction algorithm.

8 Compiling for Superscalar Processors Chap. 6

Memory dependence arcs represent instruction ordering constraints be-

tween loads and stores. For each pair of memory access instructions, if at

least one of the instructions is a store, and the compiler cannot tell that the

two instructions access non-overlapping locations, a memory dependence arc

is added from the preceding instruction to the succeeding instruction.

Control dependence arcs express instruction ordering constraints due to

control transfers. The only relevant control dependence within a basic block

is that the control transfer instruction that ends a basic block must remain

as the last instruction of the basic block after code transformation. This is

accomplished by creating a control dependence arc from each instruction in

the basic block to the control transfer instruction. As a result, the control

transfer instruction will never be moved ahead of any other instruction in the

basic block.

6.2.3 Machine description and dependence latency

Each dependence arc in the dependence graph has a latency that speci�es the

desired delay between two dependent instructions. For example, in a processor

where a load instruction requires two clock cycles to execute, a register
ow

dependence arc between a load and another instruction will have a latency of

two cycles. This indicates that the dependent instruction should be schedule

two cycles after the load instruction in order to avoid interlocking.

In general, latency varies across processors. The compiler writer needs

to have a
exible mechanism to specify such latencies for di�erence processors

or di�erent generations of the same processor family. One could attempt to

specify dependence distances by specifying a single latency for each operation,

such as two cycles for loads. Unfortunately, this is not su�cient when the

dependence distance also depends on when the result is being used by the

consuming operation. For example, address generation sometimes is done a

cycle early in the processor pipeline, requiring that the address operands be

available a cycle early. Additionally, for store operations, the data being stored

is sometimes read a cycle late in the processor pipeline, allowing the store to

be issued one cycle before this data is ready. To take this into account while

scheduling, the register
ow dependence distance to address operands should

be increased by one cycle and for stores, the register
ow dependence distance

to the store's data operand should be decreased by one cycle. These types

of latency variations can be modeled by describing when source operands are

read and destination operands are written for each operation, where time zero

is typically de�ned as just before an operation begins execution.

An example of specifying dependence distances through the use of operand

Sec. 6.2 Basic block compilation 9

// Shift operations have a two cycle latency (dest writes in time 2)
OUT shft(dest(2) src(0 0));

// Stores use address operands early (time -1) and the data operand late (time 1)
OUT st (src(-1 -1 1));

Figure 6.7 An example speci�cation of Operand Use Time

(OUT).

use (read/write) times is shown in Figure 6.7. Typically, operations read their

source operands at time zero (right before execution) and write their desti-

nation operands at their latency. Thus, a two cycle shift operation would be

described by the entry OUT shft shown in the �gure, which writes its destina-

tion at time two and reads all of its source operands at time zero. The atypical

store operation described above would then have an entry similar to OUT st

which reads its address operands at time negative one and the operand to be

stored at time one. Note that these operand read and write times take into

account all the forwarding and bypassing logic in the processor and may not

correspond to when a pipelined processor would actually read from or write to

the register �le.

Using this information, the latency for a register
ow dependence can be

calculated using the algorithm shown in Figure 6.8. The algorithm �rst queries

the above information for the relative time at which the destination is written

and the relative read time of the register's use. The latency is then calculated

by subtracting the read time from the write time. If the result is negative,

the latency is set to zero (the use must follow the de�ne). Thus if calculating

the dependence latency from a two cycle shift to the �rst (address) source

of a store, the latency would be 2 - (-1) = 3. From a two cycle shift to the

last (data) sources of a store, then latency would be 2 - 1 = 1. This method

of specifying the operand use times for operations handles almost all of the

latency characteristics in today's processors. However, some forms of partial

bypassing cannot be fully modeled using this method. The enhancements

required to handle partial bypassing are beyond the scope of this chapter.

6.2.4 Code Scheduling

Code scheduling algorithms use dependence graph and dependence latencies

to determine an instruction execution order that results in good performance.

10 Compiling for Superscalar Processors Chap. 6

// Calculate latency of register
ow dependence
dest write time = WriteTime(dep->from oper, dep->from which dest);
src read time = Read Time(dep->to oper, dep->to which src);
dep->latency = dest write time - src read time;
if (dep->latency < 0)dep->latency = 0;

Figure 6.8 Calculation of register
ow dependence latency us-

ing operand use times.

For example, to avoid stalls due to an instruction with a long latency (such

as a load or a multiply), the scheduler will attempt to move it upward in the

code so that its result is ready in time for use by a subsequent instruction.

While reorganizing the code, it must preserve the correctness of the original

program with respect to the data and control dependences. In this work, it

is assumed that instruction latencies and the type and number of functional

units are visible to the code scheduler.

List scheduling is a simple and popular form of scheduling algorithm in

industry. The general idea of list scheduling is to pick, from a set of dependence

graph nodes (instructions) that are ready to be scheduled, the best combination

of nodes to issue in a cycle. The best combination of nodes is determined by

using heuristics which assign priorities to the ready nodes [7]. A node is ready

if all of its parents in the dependence graph have been scheduled and the result

produced by each parent is available.

Figure 6.9 shows a generic list scheduling algorithm for basic blocks. The

scheduler �rst builds a dependence graph. It then assigns priorities to in-

structions according to the scarcity of their required resources and the number

of their dependent instructions. Once the dependence graph is in place, the

scheduler maintains a pool of ready instructions whose dependence latencies

have been satis�ed. At the beginning, the pool consists of instructions that do

not depend on any other instructions in the basic block.

The scheduler starts with cycle 0. It selects instructions from the ready

pool according to the priorities assigned to them (GetHighestPriorityReady-

Oper). For each instruction thus selected, the scheduler checks the resource

requirement of the instruction against the resource available. If the resource

requirement can be satis�ed, the instruction is scheduled for execution in the

current cycle (ScheduleOper). All the resources required for the scheduled op-

Sec. 6.2 Basic block compilation 11

// Build the dependence graph the basic block being scheduled
BuildDepGraph(bb);

// Calculate static scheduling priorities for each operation
CalcSchedPriorities(bb);

// Start scheduling in cycle 0
cycle = 0;

// Schedule all the operations in the basic block
while (AreUnscheduledReadyOpers(bb)) f

// In priority order, try to schedule the operations ready in this cycle
while ((oper = GetHighestPriorityReadyOper(bb,cycle)) != NULL) f

if (ResourcesAvailable(bb,oper,cycle))
ScheduleOper(bb,oper,cycle);

else
CannotSchedule(bb,oper,cycle);

g
cycle++;

g

Figure 6.9 A generic list scheduling algorithm.

eration are reserved. Scheduling an instruction can in turn enable more ready

operations. If the resource requirement cannot be satis�ed, the instruction is

rejected for the current cycle and held for future attempts in following cycles

(CannotSchedule). Once the scheduler has exhausted all the potential oppor-

tunities for the current cycle, it moves on to schedule for the next cycle. The

process iterates until there are no more instructions left unscheduled.

6.2.5 Machine description and instruction resource requirements

A very important aspect of code scheduling is to detect if there are enough re-

sources available to satisfy the requirements of a candidate instruction, shown

as the ResourcesAvailable function in Figure 6.9. Once a candidate instruc-

tion is selected, the scheduler has to record all the resources consumed by the

instruction so that the selection of subsequent instructions will be based on up

to date resource availability information, which would be done in the Sched-

uleOper function shown. In order to model the processor accurately, these

functions require detailed knowledge of the resources available in the processor

12 Compiling for Superscalar Processors Chap. 6

and knowledge of how operations use these resources as they execute. This

information is typically speci�ed in a machine description as a list of processor

resources and a set of reservation tables describing how operations use these

resources over time. For example, a scalar processor might be described as

shown in Figure 6.10. In this �gure, a list of the processor resources and

the reservation tables for a two-cycle shift operation (RT Shft) and a store

operation (RT St) are shown.

Each reservation table is speci�ed as a list of resource usages, where each

usage speci�es a processor resource and the time that the resource is used rel-

ative to when the operation begins execution. A time of zero is usually de�ned

to be just before an operation begins execution (since scheduling usually fo-

cuses on the execution stage). So the reservation table RT Shft for a two cycle

shift operation speci�es that the decoder is used at time -2, both register read

ports (Rp1 and Rp2) are used at time -1, the Shift resource is used for two

cycles (time 0 and 1), and the register write port (Wp1) is used at time 1. The

reservation table RT St is for a store operation that reads its address operands

a cycle early (time -2) and then reads the data to be stored a cycle late (time

0). The resources that need to be modeled depends heavily on the the resource

constraints of the processor. If there are plenty of register ports, it may not be

necessary to model them. If result buses are a bottleneck, then they need to

be modeled. For the two reservation tables shown, the shift unit and the read

register ports are the source of resource con
icts. The two cycle use of the shift

resource prevents a shift from being initiated every cycle. The unusual read

port usage by stores prevents shifts from initiating the cycle before or after a

store and prevents a store from initiating two cycles after another store. The

scheduler's job is to rearrange operations in a code segment to minimize the

amount of con
ict that occurs due to these resource constraints.

The information in these reservation tables can be then used by a re-

source management algorithm, shown in Figure 6.11, to answer the scheduler's

questions about whether or not there are enough resources to schedule an op-

eration. The ResoucesAvailable function checks each resource usage (ru) in

the operation's reservation table to see if every resource is available at the

time required, relative to when the operation will execute (cycle). If all the

resources are available at the required times, the function returns TRUE to

the scheduler, otherwise it returns FALSE. If the resources are available to

schedule the operation, the list scheduler algorithm described earlier then calls

ScheduleOper to schedule the operation in that cycle. Inside the call to Sched-

uleOper routine (not shown), the UseResources function is called so that the

resource availability information is kept up to date. The UseResources function

Sec. 6.2 Basic block compilation 13

Resources f
Decoder Rp1 Rp2 Wp1 Agen Shift Mem

g

Reservation Tables f
// De�ne time 0 as just before an operation begins execution
RT Shft ((Decoder -2)(Rp1 -1)(Rp2 -1)(Shift 0)(Shift 1)(Wp1 1));
RT St ((Decoder -2)(Rp1 -2)(Rp2 -2)(Agen -1)(Rp1 0)(Mem 0));

g

Figure 6.10 Example speci�cation of a processor's resources

and how operation use them as they execute.

goes through each resource usage in the operation's reservation table again, this

time marking each resource as being used. These functions assume that behind

the scenes there is a resource map table that is used by the ResourceAvailable

and UseResource functions to keep track of when processor resources have been

used.

For simplicity, the resource manager algorithms presented assume only

one reservation table per operation, but more
exibility is usually needed when

describing superscalar processors. There are usually multiple function units,

decoders, etc. that can be used as the operation executes and all of these

scheduling alternatives need to modeled. A common solution is to specify a

reservation table for each scheduling alternative, and during scheduling try

each of these alternatives until one is found where all the required resources

are available. This approach works well as long as the number of alternatives

remains small. There are representation enhancements that can be used to

reduce the number of alternatives, such as counter or graph-based approaches,

but these enhancements are beyond the scope of this chapter.

6.2.6 Relation to register allocation

Code scheduling can be done before, after, or in conjunction with register

allocation. When performed before register allocation, it is referred to as

prepass code scheduling or prescheduling. Since no register allocation has

been done to the code, there is an in�nite number of virtual registers and little

register reuse has been imposed. Therefore, the scheduler tends to have the

most freedom to reorder instructions [8]. The issue is, however, to control

the register usage during scheduling to avoid excessive register spilling during

14 Compiling for Superscalar Processors Chap. 6

// Returns 1 if resources available for the operation
ResourcesAvailable(resource map,oper,cycle)
f

// Check each resource/time pair to see if all resources are available
for (ru = oper->ru list; ru != NULL; ru = ru->next) f

if (!ResourceAvailable(resource map,ru->resource,cycle+ru->time))
return(FALSE);

g
return (TRUE);

g

// Mark the resources used by an scheduled operation
UseResources(resource map,oper,cycle)
f

// For each resource/time pair, mark the resource used at that time
for (ru = oper->ru list; ru != NULL; ru = ru->next)

UseResource(resource map,ru->resource,cycle+ru->time);
g

Figure 6.11 A generic resource manager algorithm

register allocation.

When code scheduling is performed after register allocation, it is referred

to as postpass code scheduling or postscheduling. The register allocator intro-

duces extra dependences whenever it reuses registers. These extra dependences

restrict the ability of the code scheduler to move instructions to their desired

positions. Therefore, postschedulers tend to have limited e�ectiveness. The

advantage is that they do not cause additional register spills.

There has also been work done in the area of combined register allocation

and code scheduling [14] [21]. In this case, the compiler typically switches

between scheduling strategies according to the register usage. When register

shortage occurs, the scheduler would switch to a strategy to minimize register

usage rather than to maximize parallel execution.

6.2.7 Dependence removal optimizations

Code scheduling operates under dependence constraints. In many situations,

the dependence constraints in the input code may be too restrictive for the

scheduler to achieve good schedule. Dependence removal optimizations can be

applied in these situations to reduce the constraints to facilitate code schedul-

Sec. 6.2 Basic block compilation 15

ing. Flow dependences can often be removed by using techniques that rewrite

how expressions are evaluated. One of these techniques, operation combin-

ing [26], can be used to eliminate
ow dependences between pairs of instruc-

tions if each has a compile-time constant source operand. Opportunities for

using operation combining often arise between address calculation instructions

and memory access instructions along with loop variable increments and loop

exit branches. To illustrate the application of operation combining to cal-

culation of memory addresses and branch conditions, consider the following

instructions sequence:

I1: r1 = r2 + 4

I2: r3 = MEM(r1+8)) r3 = MEM(r2+12)

I3: beq r1, 100, exit) beq r2, 96, exit

The goal of the operation combining algorithm is to rewrite I2 and I3

so that they use r2 instead of r1 with their constants adjusted appropriately.

This removes the
ow dependence from I1 to I2 and I3, allowing them to now

all to be scheduled in the same cycle. The algorithm for performing opera-

tion combining on expressions involving addition and subtraction1 is shown in

Figure 6.12.

The algorithm scans the instruction sequence looking for an addition, sub-

traction, memory access, or conditional branch operation that has a constant

source operand (to simplify matters, all constant operands are assumed to be

placed in src2). If such an operation is found, the algorithm then determines

if the operation's register source operand (assumed to be in src1) is de�ned

within the basic block and that the de�ning operation is an addition or sub-

traction operation that also has a constant source operand. If all these criteria

are satis�ed, then this operation is a candidate for operation combining. The

algorithm then checks the validity of the transformation by determining if the

register operand of the de�ning operation is still available for use (has not

been rede�ned). If the register is not available, the algorithm then tries to

make the value available by reordering operations or performing some other

transformation to make the register available for use. If the register operand

is available, or can be made available, the operation combining transformation

is performed.

The �rst step in performing the operation combining transformation is to

calculate the value to add to adjust the operation's constant operand, taking

1Multiple and divide expressions can be transformed with a similar algorithm.

16 Compiling for Superscalar Processors Chap. 6

// Perform operation combining on applicable operation pairs in BB
ClearRegisterDe�nitions();
for (oper = FirstOp(bb); oper != NULL; oper = oper->next)
f

// To apply, oper must be an add/sub/mem/cbr with const src2
// and src1 must be de�ned by an add/sub oper with a const src2
def op = De�ningOp(OperSrc1(oper));
if ((IsAdd(oper) jj IsSub(oper) jj IsMem(oper) jj IsCbr(oper)) &&

IsConst(OperSrc2(oper)) && (def op != NULL) &&
(IsAdd(def op) jj IsSub(def op)) && IsConst(OperSrc2(def op)))

f
// To apply, de�ning op's src1 value must be available to oper
if (ValueAvailable(bb, def op, OperSrc1(def op), oper) jj

MakeAvailable(bb, def op, OperSrc1(def op), oper))
f

// Determine value and the proper sign for const adjustment
adjustment = OperSrc2(def op);
if (IsSub(def op))

adjustment = -adjustment;
if (IsSub(oper) jj IsCbr(oper))

adjustment = -adjustment;

// Replace oper's src1 with def op's src1 and adjust const in src2
SetOperSrc1(oper, OperSrc1(def op));
SetOperSrc2(oper, OperSrc2(oper) + adjustment);

g
g
De�neRegister(oper,dest);

g

Figure 6.12 An algorithm for operation combining.

into account any implicit negation of the constant operand in either of the

operations. Initially, the adjustment is set to the de�ning operation's con-

stant. If the de�ning operation is a subtraction, the adjustment is negated

(the constant is assumed to be the value being subtracted). If the operation

being transformed is a subtraction or a conditional branch, the adjustment

is also negated. Then the actual transformation is performed by replacing

the operation's register operand (src1) with the de�ning operation's register

operand and adding the adjustment to the operation's constant operand. Now

the transformed operation is no longer dependent on the de�ning operation

Sec. 6.3 Beyond basic blocks - superblocks 17

and can potentially be executed earlier.

Operation combining and other transformations for rewriting how expres-

sions are evaluated are often called height reduction transformations because

they aim to reduce the dependence height for a code segment. Although there

is not enough space to go into their details here, it should be noted that, in

general, height reduction transformations are not restricted to operating only

on expressions with constant operands or expressions involving just two opera-

tions. In addition, sometimes these transformation require the addition of new

operations into the basic block which may hurt performance if the additional

resources are not available. In these cases, being able to apply a transformation

does not necessarily imply that the transformation should be performed.

All of the code scheduling and optimization techniques introduced in this

chapter so far are designed to operate within basic blocks. Although these

techniques must deal with a substantial amount of complexity to properly

address machine constraints and achieve speedup, they do not need to deal

with the complexities involved in scheduling and optimizing across multiple

basic blocks. The rest of this chapter will be dedicated to extending code

scheduling and optimizations so that they can be applied across basic blocks.

6.3 BEYOND BASIC BLOCKS - SUPERBLOCKS

The need for code scheduling and optimization across basic blocks is real.

There are many programs where only a small number (3-5 [23]) of instructions

typically exist within basic blocks. Furthermore, these instructions in the same

basic block tend to have dependences among them. In order to derive compact

instruction schedules, the compiler must be able to remove dependences and

reorder instructions across basic block boundaries. A popular structure to

allow the compiler to go across basic block boundaries is the control
ow graph.

6.3.1 Control
ow graph

A control
ow graph is a graph where nodes represent basic blocks and arcs

control transfers between basic blocks. In a typical compiler where functions

are compiled separately from each other, each function has its own control

ow graph. In compilers that perform interprocedural analysis, two approaches

exit. One is to connect all functions with a call graph while keeping the control

ow graph on a per function basis. The other is to construct a single control

ow graph for the entire program. The techniqiues discussed in this chapter

are independent of the choice between these approaches.

Figure 6.13 shows a generic algorithm for constructing control
ow graph

from a list of basic blocks generated by the basic block recognition algorithm

18 Compiling for Superscalar Processors Chap. 6

// Construct Control Flow Graph
for (bb = bb list; bb != NULL; bb = bb->next) f

last op = LastOp(bb);
if (IsCondBranch(last op)) f

AddArc(bb,BranchTarget(last op));
AddArc(bb,BranchFallThru(last op));

g
else if (IsUnCondBranch(last op))

AddArc(bb,BranchTarget(last op);
else

AddArc(bb,NextBlock(bb));
g

Figure 6.13 A generic control
ow graph construction algo-

rithm.

presented in Figure 6.4. The algorithm adds an arc between two basic blocks

A and B if there is a possible control transfer from A to B. These transfers can

be explicit: when there is a conditional or unconditional branch from A to B.

The transition can also be implicit: when B is the fall-through alternative of

the conditional branch of A when the condition is not met. The control
ow

graph of the assembly code segment in Figure 6.3 is shown in Figure 6.14.

In order to perform aggressive optimization and code reordering across

basic blocks, the compiler often relies on frequency information to give prefer-

ence to some control transfers than others. For example, in Figure 6.14, BB2

can either go to BB3 or BB4. The frequency information indicates that out

of 100 instances of BB2 execution, the execution transfers to BB3 10 times

and BB4 90 times. Such frequency information can be derived with execution

pro�ling or estimates based on program analysis. When execution pro�ling is

used, the compiler compiles the program twice. During the �rst or preliminary

compilation, the compiler inserts extra instructions into the program to record

the frequency of each branch taking one direction versas the other(s). The

user runs the program on sample input �les to collect frequency information.

The information is then used by the compiler during the second or �nal com-

pilation where the frequency information is used during code scheduling and

optimization.

Techniques have also been developed to estimate frequency information

using program analysis. Hank presented a set of heuristics [16] to derive fre-

quencies by taking code characteristics into account. For example, assume that

Sec. 6.3 Beyond basic blocks - superblocks 19

i1
i2
i3
i4
i5

BB1

i6
i7
i8

BB2

i9
i10

BB3
i11

BB4

i15
i16

BB7

i17
BB8

BB5

BB6

i12
i13

i14

1

0

1

99

10 90

1

0

1

1

1

10 90

Figure 6.14 Weighted control
ow graph.

20 Compiling for Superscalar Processors Chap. 6

i6
i7
i8

BB2

i9
i10

BB3
i11

BB4

BB5
i12
i13

1

99

10 90

1

10
90

Figure 6.15 Loop portion of control
ow graph after trace

selection.

a basic block A can go to two basic blocks B and C. If B contains a call to

bu�er �lling I/O functions, which tend to occur infrequently, the compiler can

give a much higher estimated frequency to the transfer from A to C than from

A to B.

A large number of frameworks and techniques have been proposed in

the literature to facilitate scheduling across basic blocks. It is impossible to

address all the techniques in one book chapter. The objective of this chapter

is to introduce the important issues involved. We will use a framework based

on the superblock structure, a compiler internal data structure widely used in

industry, to illustrate how these issues can be addressed.

6.3.2 The superblock structure

The superblock is an extension to trace [11] which reduces some of the book-

keeping complexity. The �rst step of the superblock scheduling algorithm is

to use trace selection to form traces from the most frequently executed paths

of the program [11]. Figure 6.15 shows the portion of the control
ow graph

corresponding to the while loop after trace selection. The dashed box outlines

the most frequently executed path of the loop.

In addition to a top entry and a bottom exit point, traces can have mul-

tiple side entry and exit points. A side entry point is a branch into the middle

of a trace and a side exit is a branch out of the middle of a trace. For example,

Sec. 6.3 Beyond basic blocks - superblocks 21

the arc from BB2 to BB3 in Figure 6.15 is a side exit and the arc from BB3

to BB5 is a side entrance.

To move code across a side entrance, complex bookkeeping is required to

ensure correct program execution [11][18]. For example, to schedule the code

within the trace e�ciently, it may be desirable to move instruction i12 from

BB5 to BB4. To ensure correct execution when control
ows through BB3,

i12 must also be copied into BB3 and the branch instruction i10 must be

modi�ed to point to instruction i13. If there was another path out of BB3

then a new basic block would need to be created between BB3 and BB5 to

hold instruction i12 and a branch to BB5. In this case, the branch instruction

i10 would branch to the new basic block.

The second step of the superblock scheduling algorithm is to form su-

perblocks. Superblocks avoid the complex repairs associated with moving code

across side entrances by removing all side entrances from a trace. Side en-

trances to a trace can be removed using a technique called tail duplication [9].

A copy of the tail portion of the trace from the side entrance to the end of

the trace is appended to the end of the function. All side entrances into the

trace are then moved to the corresponding duplicate basic blocks. The re-

maining trace with only a single entrance is a superblock. Figure 6.16 shows

the loop portion of the control
ow graph after superblock formation and

branch expansion.2 During tail duplication, BB5 is copied to form superblock

2, (SB2). SinceBB3 only branches to BB5, the branch instruction i10 can be

removed and the two basic blocks merged to form BB3'. Note that superblock

1, SB1, no longer has a side entrance.

Loop-based transformations such as loop peeling and loop unrolling [4]

can be used to enlarge superblock loops, a superblock which ends with a control

ow arc to itself. For superblock loops that usually iterate only a small number

of times, a few iterations can be peeled o� and combined with the outer loop

code to form larger superblocks. A loop is generated on the side to catch

situations where the loop iterates more than the peeled iterations. For most

cases, the peeled iterations will su�ce and the body of the loop will not need

to be executed. For superblock loops that iterate a large number of times,

the superblock loop is unrolled several times. These transformations rely on

frequency information to make their

After superblock formation many classic code optimizations are performed

to take advantage of the pro�le information encoded in the superblock struc-

ture and to clean up the code after the above transformations. These opti-

2Note that the pro�le information is scaled during tail duplication. This reduces the accuracy of
the pro�le information.

22 Compiling for Superscalar Processors Chap. 6

i6
i7
i8

BB2

i11
BB4

BB5
i12
i13

1

10 90

90

i9
i12’
i13’

BB3’

SB1

SB2
99(9/10)

1(9/10)

99(1/10)

1(1/10)

Figure 6.16 Loop portion of control
ow graph after su-

perblock formation and branch expansion.

mizations include the local and global versions of: constant propagation, copy

propagation, common subexpression elimination, redundant load and store

elimination, dead code removal, branch expansion and constant folding [1][9].

Local strength reduction, local constant combining and global loop invariant

code removal, loop induction strength reduction, and loop induction elimina-

tion are also performed. To improve the amount of parallelism in superblocks,

register renaming, loop induction variable expansion, accumulator expansion,

and tree height reduction are applied to each superblock [18].

Dependence The third step in the superblock scheduling algorithm is to build

a dependence graph. The dependence graph represents the data and control

dependences between instructions. Data dependences have been introduced in

Section 6.2.2. Data dependence arcs are formed in superblocks using the same

algorithm as in basic blocks, as shown in Figure 6.6.

Control dependences represent the ordering constraints between a branch

instruction and the instructions above and below the branch. In the case of

basic blocks, branch instructions can only occur at the end. Therefore, in

Section 6.2.2, control dependence arcs are added from all instructions of a

Sec. 6.3 Beyond basic blocks - superblocks 23

// Determine def/use sets for each basic block

for (bb = bb list; bb != NULL; bb = bb->next) f

def = ;;

use = ;;

for (oper = FirstOp(bb); oper != NULL; oper = oper->next) f

if (!SetIn(def,OperSrc1(oper)))

SetAdd(use,OperSrc1(oper));

if (!SetIn(def,OperSrc2(oper)))

SetAdd(use,OperSrc2(oper));

if (!SetIn(use,OperDest(oper)))

SetAdd(def,OperDest(oper));

g

De�neDefSet(bb,def);

De�neUseSet(bb,use);

g

Figure 6.17 Computing def/use sets for each basic block

basic block to the ending branch. However, since superblocks are formed from

several basic blocks, they may contain multiple branches. One should allow

instructions to move across branches unless such movement can cause incorrect

execution.

If an instruction is moved below a branch instruction and the destination

variable of that instruction is used before rede�ned along the taken path of the

branch, incorrect execution will result. The converse is also true. Moving an

instruction above a branch whose destination variable is used before rede�ned

along the taken path of the branch will result in incorrect execution when the

branch is taken. In order to prevent this, we de�ne for each conditional branch

instruction I, live out(I) as the set of variables that may be used before they are

de�ned when I is taken. A control-dependence arc is added from an instruction

to a subsequent conditional branch I if the instruction writes a variable that

is in live out(I) when branch I is taken. A control-dependence arc is added

from a conditional branch I to an instruction below it in the superblock if the

destination variable of the instruction is in live out(I) or if the instruction may

cause an exception.

The purpose of live-variable analysis is to determine for a variable v and a

point p whether the value of v at p could be used sometime later in the control

24 Compiling for Superscalar Processors Chap. 6

// Determine in/out sets for each basic block

for (bb = bb list; bb != NULL; bb = bb->next)

De�neLiveInSet(bb,;);

change = 1;

while (change) f

change = 0;

for (bb = bb list; bb != NULL; bb = bb->next) f

out = ;;

for (s = FirstSuccessor(bb); s != NULL; s = NextSuccessor(bb))

out = out [InSet(s);

tmp = SetSubtract(out,DefSet(bb));

in = SetUnion(UseSet(bb),tmp);

// Determine if bb in set has changed

tmp = SetSubtract(in,InSet(bb));

if (!SetEmpty(tmp)) f

change = 1;

De�neLiveInSet(bb,in);

De�neLiveOutSet(bb,out);

g

g

g

Figure 6.18 Computing live in/live out sets for each basic

block

ow graph from point p. If so, then v is live at p; otherwise v is dead. For

example, in Figure 6.19 register r3 is live at the entry to basic block BB1 since

it is later used in both basic blocks BB2 and BB3.

De�ne live in(B) to be the set of variables live at the entry point of basic

block B. De�ne live out(B) to be the set of variables live at the exit point of

basic block B. Furthermore, let def(B) be the set of variables de�ned in B prior

to being used and let use(B) be the set of variables used in B prior to being

de�ned. Figure 6.17 contains the algorithm for computing the def and use sets

for a basic block. The algorithm examines each operation of the basic block

and if a source operand of an operation has not been de�ned by a previous

Sec. 6.3 Beyond basic blocks - superblocks 25

����� ���	�
����
�

����� ����
����
����� �����
����
����� ����
����
����� ����� ����
����

������������		�
���
����
����� ���	�
�����
��
����� � �� ����
����

��!�� "#��
���
���
�
������ �
�� ��

�����������		�
���
���
�

�������������	�
������
��
������ �$�� ����
����

�������������� ����
����

������ 	���
���
���
�
������ "��
�� ��� ��
�

���

%%�

%%�

%%� %%�

%%�

%%�

%%�

%%�

Figure 6.19 New control
ow graph for �rst example

operation that operand is added to the use set of the basic block. The same

is true for de�nitions. If the destination operand has not yet been used by a

previous operation it is added to the def set of the basic block. As an example,

consider BB1 in Figure 6.19. The set use(BB1) = r1, r2 , both of which are

used before de�ned. Even though r4 is referenced by operation (i8), it is not

placed in the use set because it is de�ned by the previous operation (i7). The

set def(BB1) = r4 since it is the only register in BB1 that is de�ned before

being used. Figure 6.20 shows the use and def sets for each basic block in

Figure 6.19.

Once the def and use sets for a block are calculated, the live in() and

live out() sets for each basic block can be computed using the iterative algo-

rithm in Figure 6.18. The algorithm begins by initializing the live in set every

basic block to ;. Then for each basic block, the live in set is determined using

the equation:

live in(B) = use(B) [(live out(B) - def(B)), where

live out(B) = [live in(S) for all successors of B

In order to determine the live in/live out sets for a function these two

equations must be solved for each basic block. If there are n basic blocks in

the function then 2n equations must be solved. Also, the new live out set

of a basic block results in new live in sets for its successors. Therefore, the

26 Compiling for Superscalar Processors Chap. 6

����� ���	�
����
�

����� ����
����
����� �����
����
����� ����
����
����� ����� ����
����

������������		�
���
����
����� ���	�
�����
��
����� � �� ����
����

��!�� "#��
���
���
�
������ �
�� ��

�����������		�
���
���
�

�������������	�
������
��
������ �$�� ����
����

�������������� ����
����

������ 	���
���
���
�
������ "��
�� ��� ��
�

���

%%�

%%�

%%� %%�

%%�

%%�

%%�

%%�

#"��&�'(��	�)�&�'�������(

#"��&�'���(��	�)�&�'�(

#"��&�'���(��	�)�&�'(#"��&�'���(��	�)�&�'(

#"��&�'�(��	�)�&�'(

#"��&�'�(��	�)�&�'(

#"��&�'���(��	�)�&�'�(

Figure 6.20 Example of def and use sets.

algorithm iterates until there is no more change in the live in sets of all basic

blocks. In the worst case, the algorithm in Figure 6.18 requires n iterations to

converge to solution. For the control
ow graph in Figure 6.20, this algorithm

requires only two iterations. Figure 6.21 contains the live in and live out sets

for each basic block.

Superblock scheduling Once the control and data dependence arcs are in

place, the basic block code scheduling algorithm in Figure 6.9 applies directly

to superblock. Instructions without control dependences move freely across

branch instructions during code scheduling. This is one of the advantages of

the superblock structure. Many local optimization and scheduling algorithms

are directly applicable to superblocks. In order to achieve high performance,

however, the scheduling heuristics must be designed to avoid excessive delays

to branches when moving instructions above branches [6].

6.4 ADVANCED TOPICS

This chapter is designed to cover the very basics of compiling for superscalar

processors. A state-of-the-art compiler for superscalar processors today typi-

cally employs more advanced techniques. This section gives a incomplete set

of further references for readers who want to master the art of superscalar

Sec. 6.4 Advanced topics 27

����� ���	�
����
�

����� ����
����
����� �����
����
����� ����
����
����� ����� ����
����

������������		�
���
����
����� ���	�
�����
��
����� � �� ����
����

��!�� "#��
���
���
�
������ �
�� ��

�����������		�
���
���
�

�������������	�
������
��
������ �$�� ����
����

�������������� ����
����

������ 	���
���
���
�
������ "��
�� ��� ��
�

���

%%�

%%�

%%� %%�

%%�

%%�

%%�

%%�

�$�&�'(���#��&�'�����(

�$�&�'�����(���#��&�'�������(

�$�&�'�������(�
�#��&�'�����(

�$�&�'�������(�
�#��&�'�����(

�$�&�'�����(���#��&�'�����(

�$�&�'���(���#��&�'���(

�$�&�'���(���#��&�'(

Figure 6.21 Example of live in and live out sets.

compilation.

In the area of program analysis, memory disambiguation techniques exist

to facilitate aggressive reordering of memory loads and stores [21] [12]. Safe

analysis techniques allow compilers to detect instructions that do not cause

additional exceptions when moved above branches and therefore eliminate un-

necessary control dependence arcs [6].

In the area of scheduling technqiues, there exist a large number of tech-

niques that take advantage of loop structures to perform better code scheduling

[28] [25] [30]. Also, there exist numerous techniques to perform code scheduling

on a wide variety of code structures [2] [5] [15].

In the area of dependence removal transformations, techniques have been

developed to perform register renaming, induction variable expansion, accu-

mulator/search variable expansion, and height reduction [19] [31] [32] [20].

In the area of using special architectural features, compiler techniques

have been designed to use control speculation [10] [22], data speculation [13],

predication [3] [27] [24] [17].

Last but not least, interested readers are referred to an excellent article

by Rau and Fisher on the history, overview, and the perspective of instruction-

level parallel processing [29] where a comprehensive reading list is also included.

28 Compiling for Superscalar Processors Chap. 6

6.5 REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1986.

[2] A. Aiken and A. Nicolau. A development environment for horizontal microcode.

IEEE Transactions on Software Engineering, 14:584{594, May 1988.

[3] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren. Conversion of control

dependence to data dependence. In Proceedings of the 10th ACM Symposium

on Principles of Programming Languages, pages 177{189, January 1983.

[4] K. Anantha and F. Long. Code compaction for parallel architectures. Software

Practice and Experience, 20:537{554, June 1990.

[5] D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar

machines. In Proceedings of the ACM SIGPLAN 1991 Conference on Pro-

gramming Language Design and Implementation, pages 241{255, June 1991.

[6] R. A. Bringmann. Compiler-Controlled Speculation. PhD thesis, Department

of Computer Science, University of Illinois, Urbana, IL, 1995.

[7] P. P. Chang, D. M. Lavery, and W. W. Hwu. The importance of prepass code

scheduling for superscalar and superpipelined processors. Technical Report

CRHC-91-18, Center for Reliable and High-Performance Computing, Univer-

sity of Illinois, Urbana, IL, May 1991.

[8] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu.

The importance of prepass code scheduling for superscalar and superpipelined

processors. IEEE Transactions on Computers, 44(3):353{370, March 1995.

[9] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using pro�le information to assist

classic code optimizations. Software Practice and Experience, 21(12):1301{

1321, December 1991.

[10] P. P. Chang, N.J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu.

Three architectural models for compiler-controlled speculative execution. IEEE

Transactions on Computers, 44(4):481{494, April 1995.

[11] J. A. Fisher. Trace scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers, C-30:478{490, July 1981.

Sec. 6.5 References 29

[12] D. M. Gallagher. Memory Disambiguation to Facilitate Instruction-Level Par-

allelism Compilation. PhD thesis, Department of Electrical and Computer

Engineering, University of Illinois, Urbana, IL, 1995.

[13] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W.

Hwu. Dynamic memory disambiguation using the memory con
ict bu�er.

In Proceedings of 6th International Conference on Architectual Support for

Programming Languages and Operating Systems, pages 183{193, October 1994.

[14] J. R. Goodman and W. C. Hsu. Code scheduling and register allocation in

large basic blocks. In Proceedings of the 1988 International Conference on

Supercomputing, pages 442{452, July 1988.

[15] R. Gupta and M. L. So�a. Region scheduling: An approach for detecting

and redistributing parallelism. IEEE Transactions on Software Engineering,

16:421{431, April 1990.

[16] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. W.

Hwu. Superblock formation using static program analysis. In Proceedings

of the 26th Annual International Symposium on Microarchitecture, December

1993.

[17] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E.

Haab, J. C. Gyllenhaal, and D. I. August. Compiler technology for future

microprocessors. To appear IEEE Proceedings, December 1995.

[18] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.

Holm, and D. M. Lavery. The Superblock: An e�ective technique for VLIW

and superscalar compilation. The Journal of Supercomputing, 7(1):229{248,

January 1993.

[19] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.

Holm, and D. M. Lavery. The superblock: An e�ective structure for VLIW

and superscalar compilation. Technical report, Center for Reliable and High-

Performance Computing, University of Illinois, Urbana, IL, February 1992.

[20] D. M. Lavery and W. W. Hwu. Unrolling-based optimizations for modulo

scheduling. In Proceedings of the 28th International Symposium on Microar-

chitecture, pages 327{337, November 1995.

30 Compiling for Superscalar Processors Chap. 6

[21] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P.

Nix, J. S. O'Donnell, and J. C. Ruttenberg. The Multi
ow Trace scheduling

compiler. The Journal of Supercomputing, 7(1):51{142, January 1993.

[22] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker.

Sentinel scheduling for superscalar and VLIW processors. In Proceedings of

the 5th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 238{247, October 1992.

[23] S. A. Mahlke, R. E. Hank, J.E. McCormick, D. I. August, and W. W. Hwu. A

comparison of full and partial predicated execution support for ILP processors.

In Proceedings of the 22th International Symposium on Computer Architecture,

pages 138{150, June 1995.

[24] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.

E�ective compiler support for predicated execution using the hyperblock. In

Proceedings of the 25th International Symposium on Microarchitecture, pages

45{54, December 1992.

[25] S.-M. Moon and K. Ebcioglu. An e�cient resource-constrained global schedul-

ing technique for superscalar and vliw processors. In Proceedings of the 25th

International Symposium on Microarchitecture, pages 55{71, December 1992.

[26] T. Nakatani and K. Ebcioglu. Combining as a compilation technique for VLIW

architectures. In Proceedings of the 22nd International Workshop on Micro-

programming and Microarchitecture, pages 43{55, September 1989.

[27] J. C. Park and M. S. Schlansker. On predicated execution. Technical Report

HPL-91-58, Hewlett Packard Laboratories, Palo Alto, CA, May 1991.

[28] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining

loops. In Proceedings of the 27th International Symposium on Microarchitec-

ture, pages 63{74, December 1994.

[29] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History,

overview, and perspective. The Journal of Supercomputing, 7(1):9{50, January

1993.

[30] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Code generation schema

for modulo scheduled loops. In Proceedings of the 25th Annual International

Symposium on Microarchitecture, pages 158{169, December 1992.

Sec. 6.5 References 31

[31] M. Schlansker and V. Kathail. Acceleration of �rst and higher order recurrences

on processors with instruction level parallelism. In Proceedings of Languages

and Compilers for Parallel Computing, 6th International Workskop, August

1993.

[32] M. Schlansker, V. Kathail, and S. Anik. Height reduction of control recurrences

for ILP processors. In Proceedings of the 27th International Symposium on

Microarchitecture, pages 40{51, December 1994.

