
70

Register renaming is a technique to
remove false data dependencies—write after
read (WAR) and write after write (WAW)—
that occur in straight line code between reg-
ister operands of subsequent instructions.1-3

By eliminating related precedence require-
ments in the execution sequence of the
instructions, renaming increases the average
number of instructions that are available for
parallel execution per cycle. This results in
increased IPC (number of instructions exe-
cuted per cycle).

The identification and exploration of the
design space of register-renaming lead to a com-
prehensive understanding of this intricate tech-
nique. As this article shows, the design space of
register renaming is spanned by four main
dimensions: the scope of register renaming, the
layout of the rename buffers, the method of
register mapping, and the rename rate. Rele-
vant aspects of the design space give rise to eight
basic alternatives for register-renaming. In addi-
tion, the kind of operand fetch policy signifi-
cantly affects how the processor carries out the
rename process, which duplicates the eight
basic alternatives to 16 possible implementa-
tion schemes. The article indicates which basic
implementation scheme is used in relevant
superscalar processors.

As register renaming is usually implement-
ed in conjunction with shelving, the under-
lying microarchitecture is assumed to employ
shelving. (See the “Instruction shelving prin-
ciple” box for a discussion of this technique.)

Register renaming
The principle of register renaming is

straightforward. If the processor encounters
an instruction that addresses a destination reg-
ister, it temporarily writes the instruction’s
result into a dynamically allocated rename
buffer rather than into the specified destina-
tion register. For instance, in the case of the
following WAR dependency:

i1: add …, r2, …; [… ← (r2) + (…)]
i2: mul r2, …, …; [r2 ← (…) ∗ (…)]

the destination register of i2 (r2) is renamed,
say to r33. Then, instruction i2 becomes

i2′ : mul r33, …, …; [r33 ← (…) * (…)]

Its result is written into r33 instead of into r2.
This resolves the previous WAR dependency
between i1 and i2. In subsequent instructions,
however, references to source registers must
be redirected to the rename buffers allocated
to them as long as this renaming remains
valid.3

A precursor to register renaming was intro-
duced for floating-point instructions in 1967
by Tomasulo in the IBM 360/91,4 a scalar
supercomputer of that time that pioneered
both pipelining and shelving (dynamic
instruction issue). The 360/91 renamed float-
ing-point registers to preserve the logical con-
sistency of the program execution rather than
to remove false data dependencies.

Dezsö Sima
Budapest Polytechnic

TO BOOST PROCESSOR AND SYSTEM PERFORMANCE, VIRTUALLY ALL RECENT

SUPERSCALARS RENAME REGISTERS.

0272-1732/00/$10.00 2000 IEEE

THE DESIGN SPACE OF REGISTER
RENAMING TECHNIQUES

Tjaden and Flynn5 first suggested the use
of register renaming for removing false data
dependencies for a limited set of instructions
that corresponds more or less to the load
instructions. However, they didn’t use the
term “register renaming.” Keller6 introduced
this designation in 1975 and extended renam-
ing to cover all instructions including a desti-
nation register. He also described how to
implement register renaming in processors.
Even so, due to the complexity of this tech-
nique almost two decades passed after its con-
ception before register renaming came into
widespread use in superscalars at the begin-
ning of the 1990s.

Early superscalars such as the HP PA 7100,
Sun SuperSparc, DEC Alpha 21064, MIPS
R8000, and Intel Pentium typically didn’t use
renaming. Renaming appeared gradually—
first in a restricted form called partial renam-
ing (to be discussed in the next section) —in
the early 1990s in the IBM RS/6000
(Power1), Power2, PowerPC 601, and the
NextGen Nx586 processors. See Figure 1. Full
renaming emerged later, beginning in 1992,
first in the high-end models of the IBM main-
frame ES/9000, then in the PowerPC 603.
Subsequently, renaming spread into virtually
all superscalar processors with the notable

exception of Sun’s UltraSparc line. At present,
register renaming is considered to be a stan-
dard feature of performance-oriented super-
scalar processors.

Design space of register-renaming
techniques

The main dimensions of register renaming
are as follows:

• scope of register renaming,
• layout of the renamed registers,

71SEPTEMBER–OCTOBER 2000

Instruction shelving principle
In early superscalars, decoded and executable instructions are issued immediately to the

execution units. However, using this scheme control and data dependencies, and busy exe-
cution units, cause issue bottlenecks. The basic technique used to remove an issue bottle-
neck is instruction shelving, also known as dynamic instruction issue.3,35,45

Shelving presumes the availability of dedicated buffers, called shelving buffers, in front of
the execution units. The processor first issues instructions into available shelving buffers with-
out checking for data or control dependencies, or for busy execution units. As data depen-
dencies or busy execution units no longer restrict instruction issue, the issue bottleneck
problem occurring in early superscalars is removed. In a second step, instructions held in the
shelving buffers are dispatched for execution. During dispatching, instructions are checked for
dependencies, and not-dependent instructions are forwarded to free execution units.

At the time being, there’s no consensus on the use of terms instruction issue and instruc-
tion dispatch. Both terms are used in both possible interpretations.

Gmicro/500 (2)

Alpha 21064 (2) Alpha 21164 (4)

SuperSparc (3)

PA7100 (2)

Pentium (2)

MC68060 (3)

MC88000

Gmicro

M

Sparc

PowerPC

PA

R

Nx/K

80x86

Power

ES

MC68000

Motorola

Cyrix

Sun/Hal

MIPS

AMD

Intel

IBM

HP

TRON

Compaq

PowerPC
Alliance

R8000 (4)

Alpha

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

UltraSparc-2 (4) UltraSparc-3 (4)

R
IS

C
 p

ro
ce

ss
or

s

IBM

Motorola

MC88110 (2)

UltraSparc (4)

C
IS

C
 p

ro
ce

ss
or

s

Pentium/MMX (2)

The Nx586 has scalar issue for CISC instructions but a 3-way superscalar core for converted RISC instructions. ∗∗
PPC designates PowerPC.∗

∗∗∗ The issue rate of the Power2 and P2SC is 6 along the sequential path while only 4 immediately after a branch.

Power1 (4)12

(RS/6000)

Partial renaming
Full renaming

Power2 (6/4)13***

PPC 601 (3)14*

PPC 603 (3)15*

ES/9000 (2)

Nx586 (1/3)30** K5 (4)31

Pentium Pro (3)24

PPC 602 (2)17

PMI (4)23

(Sparc64)

*

PPC 604 (4)16

PA7200 (2)8 PA8000 (4)9 PA82000 (4)10 PA 8500 (4)11

R12000 (4)22

Pentium III (3)26

K7 (3)33

Alpha 21264 (4)7

Pentium II (3)25

MII (2)29

K6 (3)32

P2SC (6/4)16***

M1 (2)28

PPC 620 (4)19 Power3 (4)20

R10000 (4)21

*

*

Figure 1. Chronology of register renaming in commercial superscalar processors. The introduction date indicates the first year
of volume production. Following the model designation is the issue rate of the processors (in parentheses). Note that for the
issue rate of CISC processors, one x86 instruction is considered to be the equivalent of 1.3 to 1.9 RISC instructions.34

• method of register mapping and,
• rename rate

as indicated in subsequent sections. Due to
volume restrictions we ignore additional
dimensions that are related to the renaming
process such as recovery from a misprediction.

Scope of register renaming
To indicate how extensively the processor

makes use of renaming, I distinguish between
partial and full renaming. Partial renaming is
restricted to one or only a few instruction types,
for instance, only to floating-point instructions.
Early processors typically employed this incom-
plete form of renaming; the Power1 (RS/6000),
Power2, PowerPC 601, and the Nx586 are
examples, as shown in Figure 2. Of these, the
Power1 (RS/6000) renames only floating-point
loads. As the Power1 has only a single floating-
point unit, it executes floating-point instruc-
tions in sequence. Thus there’s no need for
renaming floating-point register instructions.
The Power2 processor introduces multiple
floating-point units and for this reason it
extends renaming to all floating-point instruc-
tions. The Power PC 601 renames only the link
and count register. The Nx586, which has an
integer core, obviously restricted renaming to

fixed-point instructions.
Full renaming covers all instructions includ-

ing a destination register. As Figure 1 demon-
strates, virtually all recent superscalar
processors employ full renaming. Notewor-
thy exceptions are the Sun UltraSparc line and
Alpha processors preceding the Alpha 21264.

Rename buffer layout
Rename buffers establish the actual frame-

work for renaming. There are three essential
design aspects in their layout:

• type of rename buffers,
• number of rename buffers, and
• number of read and write ports.

Rename buffer types
The choice of which type of rename buffers

to use in a processor has far-reaching impact
on the implementation of the rename process.
Given its importance, designers must consid-
er the various design options. To simplify this
presentation, I initially assume a common
architectural register file for all processed data
types, and then extend the discussion to the
split-register scenario that is commonly
employed.

As Figure 3 illustrates, there are four fun-
damentally different ways to implement
rename buffers. The range of choices includes
a) using a merged architectural and rename
register file, b) employing a stand-alone
rename register file, c) keeping renamed val-
ues either in the reorder buffer (ROB), or d)
in the shelving buffers.

In the first approach, rename buffers are
implemented along with the architectural reg-
isters in the same physical register file called
the merged architectural and rename register
file or the merged register file for short. Here,
both architectural and rename registers are
dynamically allocated to particular registers
of the same physical file.

Each physical register of the merged archi-
tectural and rename register file is at any time
in one of four possible states.27 These states
reflect the actual use of a physical register as
follows:

• uncommitted (available) state,
• used as an architectural register (archi-

72

RENAMING REGISTERS

IEEE MICRO

Renaming comprises
all eligible instruction types

The indicated superscalar
line examples begin with the

PowerPC 603 (1993)
PA 7200 (1995)
Pentium Pro (1995)
R10000 (1996)
K5 (1995), and
MII (1997).

Most notable exceptions
are Alpha processors
preceding the Alpha 21264
and Sun UltraSparc line

Renaming is restricted
to particular
instruction types

Examples are a few
early superscalar
processors:

Power11 (RS/6000, 1990)
Power22 (1993)
PowerPC3 601 (1993), and
Nx5864 (1994).

Trend

1 Renames only FP loads.
2 Extends renaming to all FP instructions.
3 Renames only the link and count register.
4 Since the Nx586 has an integer core,
 it renames only FX instructions.

(a) (b)

Figure 2. Register renaming scope: partial (a) and full (b).

tectural register state),
• used as a rename buffer—

but this register doesn’t
yet contain the result of
the associated instruction
(rename buffer, not-valid
state), and

• used as a rename buffer—
this register already con-
tains the result of the
associated instruction
(rename buffer, valid
state).

During instruction pro-
cessing, the states of the phys-
ical registers are changed as
described in the following and
indicated in the state transi-
tion diagram in Figure 4.

As part of the initialization
the first n physical registers are assigned to the
architectural registers, where n is the number
of the registers declared by the instruction set
architecture (ISA). These registers are set to be
in the architectural register (AR) state; the
remaining physical registers take on the avail-
able state. When an issued instruction includes
a destination register, a new rename buffer is
needed. For this reason, one physical register is
selected from the pool of the available registers

and allocated to the concerned destination reg-
ister. Accordingly, its state is set to the rename
buffer, not-valid state, and its valid bit is reset.
After the associated instruction finishes execu-
tion, the produced result is written into the allo-
cated rename buffer. Its valid bit is set, and its
state changes to rename buffer, valid. Later,
when the associated instruction completes, the
allocated rename buffer will be declared to be
the architectural register that implements the

73SEPTEMBER–OCTOBER 2000

Merged
rename and
architectural
register file

Method of
operand fetching

Merged
architectural and

rename register file

Power1 (1990)
Power2 (1993)
ES/9000 (1992)
Nx586 (1994)
PMI (Sparc64, 1995)
R10000 (1996)
R12000 (1999)
Alpha 21264 (1998)

Stand-alone
rename register file

Rename
register file

Method of
updating the

program status

PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)
Power3 (1998)
PA 8000 (1996)
PA 8200 (1997)
PA 8500 (1999)

Architectural
register file

Holding renamed
values in the ROB

ROB

Am290000 superscalar (1995)
K5 (1995)
M1 (1995)
K6 (1997)
Pentium Pro (1995)
Pentium II (1997)
Pentium III (1999)

Architectural
register file

Holding renamed
values in the

shelving buffers

Shelving
buffers

Architectural
register file

Figure 3. Generic types of rename buffers. Shaded boxes indicate the rename buffers.

Entry is allocated
to an issued instruction

Instruction
is completed

Initialized
(remaining registers)

Initialized
(first n registers)

Available

AR

RB,
not valid

RB,
valid

Instruction
is canceled Instruction is finishedArchitectural register

is reclaimed

Figure 4. State transition diagram of a particular register of the merged architectural and
rename register file.27 AR: architectural register, RB: rename buffer.

destination register specified in the just-
completed instruction. Its state then changes
to the architectural register state to reflect this.

Note that in contrast to other rename buffer
types, no data transfer is required for updat-
ing the architectural registers in merged archi-
tectural and rename register files. Instead, only
the status of the related registers needs to be
changed.

Finally, when an old architectural register
is reclaimed, it is set to the available state.
Assuming dispatch-bound operand fetching,
a possibility for reclaiming such old architec-
tural registers is to keep track of the physical
registers that have been the previous instances
of the same architectural register, and reclaim
the previous instance when the instruction
incorporating the new instance completes.

Also, not-yet-completed instructions must
be canceled for exceptions or faulty executed
speculative instructions. Then allocated
rename buffers in a) the rename buffer, not-
valid and b) the rename buffer, valid states are
deallocated and changed to available states. In
addition, the corresponding mappings—kept
in either the mapping table or the rename
buffer (as discussed later)—must be canceled.

Merged architectural and rename register
files are employed, for instance, in the high-
end models (520-based models) of the IBM
ES/9000 mainframes, Power and R1x000
processors, and Alpha 21264s.

All other alternatives separate rename
buffers from architectural registers.

In the first “separated” variant, a stand-
alone rename register file (or rename register
file for short) is used exclusively to implement
rename buffers. The PowerPC 603/620 and
PA8x00 processors are examples of using
rename register files.

Alternatively, renaming can also be based
on the reorder buffer (ROB); see “ROB prin-
ciple” box. The ROB has recently been wide-
ly used to preserve the sequential consistency
of instruction execution. When using a ROB,
an entry is assigned to each issued instruction
for the duration of its execution. It’s quite nat-
ural to use this entry for renaming as well—
basically by extending it with a new field that
will hold the result of that instruction. Exam-
ples of processors using the ROB for renam-
ing are the Am29000 superscalar, K5, K6,
Pentium Pro, Pentium II, and Pentium III.

The ROB can even be extended further to
serve as a central shelving buffer as well. In
this case, the ROB is also occasionally desig-
nated as the DRIS (deferred scheduling reg-
ister renaming instruction shelf). The
Lightning processor proposal36 and the K6
made use of this solution. Because the Light-
ning proposal—which dates back to the
beginning of the 1990s—was too ambitious
in the light of the technology available at that
time, it couldn’t be economically implement-
ed and never reached the market.

The last conceivable implementation alter-
native of rename buffers is to use the shelving
buffers for renaming (see the “Instruction
shelving principle” box again). In this case,
each shelving buffer must be extended func-
tionally to also perform the task of a rename
buffer. But this alternative has a drawback
resulting from the different deallocation mech-
anisms of the shelving and rename buffers.
While shelving buffers can be reclaimed as
soon as the instruction has been dispatched,
rename buffers can be deallocated only at a
later time, not earlier than the instruction has
been completed. Thus, a deeper analysis is
needed to reveal the appropriateness of using
shelving buffers for renaming. To date, no
processor has chosen this alternative.

Split rename register files
For simplicity’s sake, I’ve so far assumed that

all data types are stored in a common archi-
tectural register file. But usually, processors
provide distinct architectural register files for
fixed-point and floating-point data. Conse-
quently, they typically employ distinct rename
register files, as shown in Figure 5.

As depicted in this figure, when the proces-
sor employs the split-register principle, dis-

74

RENAMING REGISTERS

IEEE MICRO

ROB principle
The reorder buffer is implemented basically as a circular buffer whose entries are allocated

and deallocated by means of two revolving pointers.3,37 It operates as follows.
When instructions are issued, a ROB entry is allocated to each instruction, strictly in pro-

gram order. Each ROB entry keeps track of the execution status of the associated instruc-
tion. The ROB allows instructions to complete (commit, retire) only in program order by
permitting an instruction to complete only if it has finished its execution and all preceding
instructions are already completed. In this way, instructions update the program state in
exactly the same way as a sequential processor would have done. After an instruction has
completed, the associated ROB entry is deallocated and becomes eligible for reuse.

tinct fixed-point and floating-point register
files are needed for merged files and stand-
alone rename register files. In this case separate
data paths are also needed to access the fixed-
point and the floating-point registers.

Recent processors typically incorporate
split rename registers. When renaming takes
place within the ROB, usually a single mech-
anism is maintained for the preservation of
the sequential consistency of instruction exe-
cution. Then all renamed instructions are
kept in the same ROB queue despite using
split architectural register files for fixed-point
and floating-point data. In this case, clearly,
each ROB entry is expected to be long
enough to hold either fixed-point or floating-
point data.

Number of rename buffers
Rename buffers keep register results tem-

porarily until instructions complete. By tak-
ing into account that not every instruction
produces a register result, we can state that in
a processor up to as many rename buffers are
needed as the maximum number of instruc-
tions that are in execution; that is, issued but
not yet completed. Issued but not yet com-
pleted instructions are either

• held in shelving buffers waiting for exe-
cution (if shelving is employed),

• just been processed in execution units,
• in the load queue waiting for cache access

(if there is a load queue), or
• in the store queue waiting for comple-

tion, then forwarded to the cache to exe-
cute the required store operation (if there
is a store queue).

Thus, the maximal number of instructions
that may have been issued but not yet com-
pleted in the processor (npmax) is

npmax = wdw + nEU + nLq + nSq (1)

where

wdw is the width of the dispatch window
(total number of shelving buffers),

nEU is the number of the execution units
that may operate in parallel,

nLq is the number of the entries in the load
queue, and

nSq is the number of the entries in the store
queue.

Assuming a worst-case design approach,
from this formula we can determine that the
total number of rename buffers required
(nrmax) is

nrmax = wdw + nEU + nLq, (2)

since instructions held in the store queue don’t
require rename buffers.

Furthermore, if the processor includes a
ROB, based on Equation 1 we can say that
the total number of ROB entries required
(nROBmax) is

nROBmax = npwax. (3)

Nevertheless, if the processor has fewer
rename buffers or fewer ROB entries than
expected, according to the worst-case
approach (as given by Equations 2 and 3) issue
blockages can occur due to missing free

75SEPTEMBER–OCTOBER 2000

Merged FP
architectural
register file

FX rename
register file
FX rename
register file

FX
architectural
register file

FP
architectural
register file

Merged FX
architectural
register file

FP rename
register file

(a) (b)

Figure 5. Using split registers in the case of (a) merged register files, and (b) a stand-alone
rename register file. FX indicates fixed point; FP indicates floating point.

rename buffers or ROB entries. With a
decreasing number of entries provided, we
expect a smooth, slight performance degra-
dation. Hence, a stochastic design approach
is also feasible. There, the required number of
entries is derived from the tolerated level of
performance degradation.

Based on Equations 1 to 3, the following
relations are typically valid concerning the
width of the processor’s dispatch window
(wdw), the total number of the rename
buffers (nr), and the reorder width (nROB),
which equals the total number of ROB
entries available:

wdw < nr ≤ nROB (4)

Table 1 summarizes the type and the num-
ber of rename buffers provided in recent
RISC and x86 superscalar processors. In addi-
tion, Table 1 shows four key parameters of
the enlisted processors: the issue rate, width
of the dispatch window (wdw), total number

of rename buffers provided (nr), and the
reorder width (nROB).

As the data in Table 1 indicates, the designs
of most processors have taken into account
the four interrelations. There are, however,
two obvious exceptions. First, the PowerPC
604 provides 20 rename buffers, more than
the processor’s reorder width of 16. In the sub-
sequent PowerPC 620, Intel decreased the
number to 16. Second, the R10000 provides
only 32 ROB entries. This number is far too
low compared to the dispatch width (48) and
to the number of available rename buffers
(64). MIPS addressed this disproportion in
the R12000 by increasing the reorder width
of the processor to 48.

Number of read and write ports
By taking into account current practice, in

the following discussion I assume split regis-
ter files.

Clearly, as many read ports are required in
the rename buffers as there are data items that

76

RENAMING REGISTERS

IEEE MICRO

Table 1. Type and available number of rename buffers in recent superscalars as

well as four related parameters of the enlisted processors.

Processor type Type of No. of Width of dispatch Total no. Reorder

(year of volume rename rename buffers Issue window of rename buffers width

shipment) buffer FX FP rate (wdw) (nr) (nROB)

RISC processors

PowerPC 603 (1993) Ren. reg. file N/A 4 3 3 N/A 5
PowerPC 604 (1995) Ren. reg. file 12 8 4 12 20 16
PowerPC 620 (1996) Ren. reg. file 8 8 4 15 16 16
Power3 (1998) Ren. reg. file 16 24 4 20 (?) 40 32
R10000 (1996) Merged 32 32 4 48 64 32
R12000 (1998) Merged 32 32 4 48 64 48
Alpha 21264 (1998) Merged 48 41 4 35 89 80
PA 8000 (1986) Ren. reg. file 56 56 4 56 112 56
PM1 (1996) Merged 38 24 4 36 62 62
x86 (CISC) processors

Pentium Pro (1995) In the ROB 40 32 201 40 401

Pentium II (1997) In the ROB 40 32 201 40 401

K5 (1995) In the ROB 16 42 111 (?) 16 161

K6 (1996) In the ROB 24 32 241 24 241

M3 (2000 expected) Merged 32 N/A 32 561 N/A 322

1 RISC operations
2 x86 instructions (on average, produce 1.3 to 1.9 RISC operations34)

? Questionable data

N/A Not available

the rename buffers may need to supply in any
one cycle. Note that rename buffers supply
required operands for the instructions to be
executed and also forward the results of the
completed instructions to the addressed archi-
tectural registers.

The number of operands that need to be
delivered in the same cycle depends first of all
on whether the processor fetches operands dur-
ing instruction issue or during instruction dis-
patch. (See the “Operand fetch policies” box.)

If operands are fetched issue bound, the
rename buffers need to supply the operands
for all instructions that are issued into the
shelving buffers in the same cycle. Thus, both
the fixed-point and floating-point rename
buffers are expected to deliver in each cycle all
required operands for up to as many instruc-
tions as the issue rate. This means that in
recent four-way superscalar processors the
fixed-point and the floating-point rename
buffers typically need to supply 8 and 12
operands respectively, assuming up to two
fixed-point and three floating-point operands
in each fixed-point and floating-point instruc-
tion, respectively. If, however, there are some
issue restrictions, the required number of read
ports is decreased accordingly.

In contrast, if the processor uses the dis-
patch-bound fetch policy, the rename buffers
should provide the operands for all instruc-
tions that are forwarded from the dispatch
window (instruction window) for execution
in the same cycle. In this case, the fixed-point
rename buffers need to supply the required
fixed-point operands for the integer and load-
store units (including register operands for the
specified address calculations and fixed-point
data for the fixed-point store instructions).

The floating-point rename buffers need to
deliver operands for the floating-point units
(floating-point register data) and also for the
load-store units (floating-point operands of
the floating-point store instructions). In the
Power3, for instance, this implies the follow-
ing read port requirements. The fixed-point
rename buffers need to have 12 read ports (up
to 3 × 2 operands for the 3 integer-units as
well as 2 × 2 address operands and 2 × 1 data
operands for the 2 load-store units). On the
other hand, the floating-point rename regis-
ters need to have 8 read ports (up to 2 × 3
operands for the 2 floating-point units and

2 × 1 operands for the 2 load-store units).
In addition, if rename buffers are imple-

mented separately from the architectural reg-
isters, the rename buffers must forward in each
cycle as many result values to the architectur-
al registers as the completion rate (retire rate)
of the processor. Since recent processors usu-
ally complete up to four instructions per cycle,
this task typically increases the required num-
ber of read ports in the rename buffers by four.

Too many read ports in a register file may
unduly increase the physical size of the data
path and consequently the cycle time. To
avoid this problem, a few high-performance
processors (such as the Power2, Power3, and
Alpha 21264) implement two copies of par-
ticular register files. The Power2 duplicates
the fixed-point architectural register file, the
Power3 doubles both the fixed-point rename
and the architectural file, and the Alpha
21264 provides two copies of the fixed-point
merged architectural and rename register file.

As a result, fewer read ports are needed in
each of the copies. For example, with two
copies of the fixed-point merged register file,
the Power3 needs only 10 read ports in each
file, instead of 16 read ports in a fixed-point
register file. A drawback of this approach is,
however, that a scheme is also required to keep
both copies coherent.

Now let’s turn to the required number of
write ports (input ports). Since in each cycle
rename buffers need to accept all results pro-
duced by the execution units, these buffers
must provide as many write ports as results the
execution units may produce per cycle. The
fixed-point rename buffers receive results from
the available integer-execution units and from
the load-store units (fetched fixed-point data).
In contrast, the floating-point rename buffers
hold the results of the floating-point execution
units and the load-store units (fetched float-

77SEPTEMBER–OCTOBER 2000

Operand fetch policies
If a processor uses the issue-bound fetch policy, it fetches referenced register operands

during instruction issue—that is, while it forwards decoded instructions into the shelving
buffers.3,11 In contrast, the dispatch-bound fetch policy defers operand fetching until exe-
cutable instructions are forwarded from the shelving buffers to the execution units. When a
processor fetches issue-bound operands, shelving buffers hold the source operand values.
In contrast, in dispatch-bound operand fetching, shelving buffers have much shorter entries
as they contain only the register identifiers.

ing-point data). Most results are single data
items requiring one write port. However, there
are a few exceptions. When execution units
generate two data items, they require two write
ports as well, similar to the PowerPC proces-
sor load-store units. After execution of the
LOAD-WITH-UPDATE instruction, these
units return both the fetched data value and
the updated address value.

Register mapping methods
During renaming, the processor needs to

allocate rename buffers to the destination reg-
isters of the instructions (or usually to every
instruction to simplify logic). It also must
keep track of the mappings actually used and
deallocate rename buffers no longer used.
Accordingly, the related aspect of the design
space has three components:

• allocation scheme of the rename buffers,
• method of keeping track of actual map-

pings, and
• deallocation scheme of rename buffers.

As far as the allocation scheme of rename
buffers is concerned, rename buffers are usu-
ally allocated to instructions during instruc-
tion issue. If rename buffers are assigned to
the instructions as early as during instruction
issue, rename buffer space is wasted, since
rename buffers are not needed until the results

become available in the last execution cycle.
Delaying the allocation of rename buffers to
the instructions37 saves rename buffer space.
Various schemes have been proposed for this,
such as virtual renaming37-40 and others.41 In
fact, a virtual allocation scheme has already
been introduced into the Power3.37

Established mappings must be maintained
until their invalidation. There are two possi-
bilities for keeping track of the actual map-
ping of particular architectural registers to
allocated rename buffers. The processor can
use a mapping table for this or can track the
actual register mapping within the rename
buffers themselves. See Figure 6.

A mapping table has as many entries as
there are architectural registers provided by
the instruction set architecture (usually 32).
Each entry holds a status bit (called the entry
valid bit in Figure 6a), which indicates
whether the associated architectural register
is renamed. Each valid entry supplies the
index of the rename buffer, which is allocat-
ed to the architectural register belonging to
that entry (called the RB index). For instance,
Figure 6a shows that the mapping table holds
a valid entry for architectural register r7,
which contains the RB index of 12. This indi-
cates that architectural register r7 is actually
renamed to rename buffer 12.

Each entry is set up during instruction
issue, while new rename buffers are allocated

78

RENAMING REGISTERS

IEEE MICRO

Entry
valid

RB
index

Mapping
table

1

1

0
5

0

8

6
7 1

17

12
14

Lookup
for r7

12
(RB index = 12)

Entry
valid

Dest.
register

no.
Latest

bit Value

Rename buffers

Value
valid

1
1
1

9

0

12

10
11

1

8
7
9
7 1

1
0
1

-
7

70

80

0
1
1

1

Associative
lookup
for r7

12
(RB index = 12)

(a) (b)

Figure 6. Methods for keeping track of the actual mapping of architectural registers to rename buffers: using a mapping table
(a) and mapping within rename buffers (b).

to the issued instructions. A valid mapping is
updated when the architectural register
belonging to that entry is renamed again. It
will be invalidated when the related mapping
is no longer needed and the allocated rename
buffer is reclaimed. In this way, the mapping
table continuously provides the latest alloca-
tions. Source registers are renamed by access-
ing the mapping table with the register
numbers as indices and fetching the associat-
ed rename buffer identifiers (RB indices), as
Figure 6a shows.

Obviously, for split architectural register
files, separate fixed-point and floating-point
mapping tables are needed.

As discussed earlier, mapping tables should
provide one read port for each source operand
that may be fetched in any one cycle and one
write port for each rename buffer that may be
allocated in any one cycle.

The other fundamentally different alterna-
tive for keeping track of actual register map-
pings relies on an associative mechanism (see
Figure 6b). In this case no mapping table
exists, but each rename buffer holds the iden-
tifier of the associated architectural register
(usually the register number of the renamed
destination register) and additional status bits.
These entries are set up during instruction
issue when a particular rename buffer is allo-
cated to a specified destination register. As Fig-
ure 6b shows, in this case each rename buffer
holds the following five pieces of information:

• a status bit, which indicates that this
rename buffer is actually allocated (called
the entry valid bit in the figure),

• the identifier of the associated architec-
tural register (Dest. Reg. No.),

• a further status bit, called the latest bit,
whose role will be explained later,

• another status bit, called the value valid
bit, which shows whether the actual value
of the associated architectural register has
already been generated, and

• the value itself, provided that the value
valid bit signifies an already produced
result.

The latest bit marks the last allocation of a
given architectural register if it has more than
one valid allocation due to repeated renam-
ing. For instance, in our example architectur-

al register r7 has two subsequent allocations.
From these, entry 12 is the latest one as its lat-
est bit has been set. Thus, in Figure 6b, renam-
ing source register r7 would yield the RB
index of 12. This method of renaming source
registers requires an associative lookup in all
entries searching for the latest allocation of
the given source register.

With issue-bound operand fetching, source
registers are both renamed and accessed during
the issue process. For this reason, in this case,
processors usually integrate renaming and
operand accessing, and therefore keep track of
the register mapping within the rename
buffers. For dispatch-bound operand fetching,
however, these tasks are separated. Source reg-
isters are renamed during instruction issue,
whereas the source operands are accessed while
the processor dispatches the instructions to the
execution units. Therefore, in this case, proces-
sors typically use mapping tables.

If rename buffers are no longer needed, they
should be reclaimed (deallocated). The
scheme of deallocation depends on key aspects
of the overall renaming process. In particular,
they depend on the allocation scheme of the
rename buffers, the type of rename buffers
used, the method of keeping track of actual
allocations, and even whether issue-bound or
dispatch-bound operands are fetched. How-
ever, lack of space restricts discussion of this
aspect of the design space in detail here.

Rename rate
As its name suggests, the rename rate stands

for the maximum number of renames that a
processor can perform in a cycle. Basically, the
processor should rename all instructions
issued in the same cycle to avoid performance
degradation. Thus, the rename rate should
equal the issue rate. This is easier said than
done, since it is not at all an easy task to imple-
ment a high rename rate (four or higher). Two
reasons make it difficult.

First, for higher rename rates the detection
and handling of interinstruction dependencies
during renaming becomes a more complex
task. Second, higher rename rates require a
larger number of read and write ports on reg-
ister files and mapping tables. For instance, the
four-way superscalar R10000 can issue any
combination of four fixed-point and floating-
point instructions. Accordingly, its fixed-point

79SEPTEMBER–OCTOBER 2000

mapping table needs 12 read ports and 4 write
ports, and its floating-point table requires 16
read and 4 write ports. This many ports are
needed since fixed-point instructions can refer
up to 3, and floating-point instructions up to
4 source operands in this processor.

Basic alternatives, possible implementation
schemes

Theoretically in the design space of regis-
ter renaming, each possible combination of
the available design choices yields one possi-
ble implementation alternative. However,
instead of considering all possible implemen-
tation alternatives, it makes sense to focus only
on those that differ in relevant qualitative
aspects from each other—the basic alterna-
tives. Possible basic alternatives can be derived
from the design space in two steps: by identi-
fying the relevant qualitative design aspects
involved and then by composing their possi-
ble combinations.

When selecting the relevant qualitative
design aspects, we should recall the design
space of renaming mentioned earlier. First, we
ignore two main aspects: the scope of register

renaming because recent processors typically
implement full renaming, and the rename rate
because of its quantitative character. Two
main design aspects remain: the layout of the
rename buffers and the method of register
mapping. Furthermore, the layout of the
rename buffers itself covers three design
aspects: the type of rename buffers, their num-
ber, and the number of the read and write
ports. Of these only the type of the rename
buffers is of qualitative character. It follows
that the design space of register renaming
includes only two relevant qualitative aspects:
the type of the rename buffers and the method
of register mapping.

The design choices available for these two
relevant design aspects result in eight possible
combinations, called the basic alternatives for
register renaming, as shown in Figure 7. In
addition, this figure also takes into account
that the processor’s operand fetch policy—
which is a design aspect of shelving—signifi-
cantly affects how the renaming process is
carried out. This splits the eight basic renam-
ing alternatives into 16 feasible implementa-
tion schemes. Figure 7 also indicates which

80

RENAMING REGISTERS

IEEE MICRO

Basic alternatives of register remaining

Separate
rename register files

Merged architectural
and rename register file

Renaming
within the ROB

Renaming within
the shelving buffers

Basic
alternatives

Implementation
schemes

Proposals Keller (1996)6 Smith-Pleszkun42

(1987)
Johnson43 (1987)

Lighting45 (1991)
K6* (1997)

Sohi, Vajapeyem44

(1987)

PMI (1995)
(Sparc64)

Processors Power1 (1990)
ES/9000 (1992)
Power 2 (1993)
P2SC (1996)
Nx586 (1994)
R10000 (1996)
R12000 (1999)
M3 (2000)

PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)

PentiumPro (1995)
Pentium II (1997)
Pentium III (1999)

PA 8000 (1996)
PA 8200 (1997)
Power3 (1998)
PA 8500 (1999)

AM29000 (1995)*
K5 (1995)

Using a
mapping table

Mapping
within the RBs

Using a
mapping table

Mapping
within the RBs

Using a
mapping table

Mapping
within the RBs

Using a
mapping table

Mapping
within the RBs

Issue-
bound

operand
fetching

Dispatch-
bound

operand
fetching

Issue-
bound

operand
fetching

Dispatch-
bound

operand
fetching

Issue-
bound

operand
fetching

Dispatch-
bound

operand
fetching

Issue-
bound

operand
fetching

Dispatch-
bound

operand
fetching

Issue-
bound

operand
fetching

Dispatch-
bound

operand
fetching

Issue-
bound

operand
fetching

Dispatch-
bound

operand
fetching

*The shelving buffers are also implemented in the ROB. The resulting unit is occasionally called the DRIS.

Figure 7. Basic implementation alternatives of register renaming. RB designates the rename buffer.

implementation schemes are used in relevant
superscalar processors and some hints about
their origins.

As Figure 7 indicates, relevant superscalar
processors make use of only four of the eight
possible basic alternatives of renaming. More-
over, most of the latest processors employ the
following basic alternatives of renaming when
fetching dispatch-bound operands:

• use of merged architectural and rename
register files and mapping tables
(R10000, R12000, M3).

• use of separate rename register files and
mapping registers within the rename reg-
isters (PA8x00 line, Power3), and

• renaming within the ROB and using
mapping tables (Pentium Pro, Pentium
II, Pentium III).

It’s also conceivable to use different basic
alternatives for renaming fixed-point and float-
ing-point instructions, as is done in the K7.
This processor uses the ROB for renaming
fixed-point instructions and a merged archi-
tectural and rename register file for renaming
floating-point ones. However, as AMD didn’t
disclose the method of register mapping, this
processor isn’t included in Figure 7.

As this figure shows, the latest processors
fetch predominantly dispatch-bound
operands due to the comparative advantage
of this fetch policy.40 The move away from the
issue-bound operands to the dispatch-bound
fetch policy is manifested in AMD’s subse-
quent K5 and K6, and by the fact that the
PowerPC 620-based Power3 has also made
this transition.

R egister renaming and shelving mark the
first major step in the evolution of super-

scalar processors. The introduction of these
techniques became necessary to resolve the
issue bottleneck of early superscalar designs.
As revealed in this article, register renaming
is a complex technique whose understanding
requires the identification and exploration of
its design space. MICRO

References
1. B.R. Rau and J.A. Fisher, “Instruction Level

Parallel Processing: History, Overview and
Perspective,” J. Supercomputing, Vol. 7. No.

1, 1993, pp. 9-50.
2. P.E. Smith and G.S. Sohi, “The Microarchi-

tecture of Superscalar Processors,” Proc.
IEEE, IEEE Press, Piscataway, N.J., Vol. 83,
No. 12, Dec. 1995, pp. 1609-1624.

3. D. Sima, T. Fountain, and P. Kacsuk,
Advanced Computer Architectures, Addison
Wesley Longman, Harlow, England, 1997.

4. R.M. Tomasulo, “An Efficient Algorithm for
Exploiting Multiple Arithmetic Units,” IBM
J. Research and Development, Vol. 11, No.
1, 1967, pp. 25-33.

5. G.S. Tjaden and M.J. Flynn, “Detection and
Parallel Execution of Independent Instruc-
tions,” IEEE Trans. Computers, Vol. C-19,
No. 10, 1970, pp. 889-895.

6. R.M. Keller, “Look-Ahead Processors,”
Computing Surveys, Vol. 7, No. 4, 1975, pp.
177-195.

7. D. Leibholz and R. Razdan, “The Alpha
21264: A 500 MIPS Out-of-Order Execution
Microprocessor,” Proc. Compcon, IEEE
Computer Society Press, Los Alamitos,
Calif., 1997, pp. 28-36.

8. G. Kurpanek et al., “PA-7200: A PA-RISC
Processor with Integrated High Performance
MP Bus Interface,” Proc. Compcon, IEEE CS
Press, 1994, pp. 375-382.

9. D. Hunt, “Advanced Performance Features
of the 64-Bit PA-8000,” Proc. Compcon,
IEEE CS Press, 1995, pp. 123-128.

10. A.P. Scott et al., “Four-Way Superscalar PA-
RISC Processors,” Hewlett-Packard J., Aug.
1997, pp. 1-9.

11. G. Lesartre and D. Hunt, PA-8500: The Con-
tinuing Evolution of the PA-8000 Family,
Hewlett-Packard Co., Palo Alto, Calif., 1998,
pp. 1-11.

12. G.F. Grohoski, “Machine Organization of the
IBM RISC System/6000 Processor,” IBM J.
Research and Development, Vol. 34, No. 1,
1990, pp. 37-58.

13. S. White and J. Reysa, PowerPC and
POWER2: Technical Aspects of the New
IBM RISC System/6000, IBM Corp., Austin,
Texas,1994.

14. M. Becker et al., “The PowerPC 601 Micro-
processor,” IEEE Micro, Oct. 1993,
pp. 54-68.

15. B. Burgess et al., “The PowerPC 603 Micro-
processor,” Comm. ACM, ACM Press, New
York, Vol. 37, No. 6, 1994, pp. 34-42.

16. S.P. Song et al., “The PowerPC 604 RISC

81SEPTEMBER–OCTOBER 2000

Microprocessor,” IEEE Micro, Oct. 1994,
pp. 8-17.

17. D. Ogden et al., “A New PowerPC Micro-
processor for Low Power Computing Sys-
tems,” Proc. Compcon, IEEE CS Press,
1995, pp. 281-284.

18. L. Gwennap, “IBM Crams Power2 Onto Sin-
gle Chip,” Microprocessor Report, Micro
Design Resources, Sunnyvale, Calif., Vol. 10,
No. 11, 1996, pp. 14-16.

19. D. Levitan et al., “The PowerPC 620 Micro-
processor: A High Performance Superscalar
RISC Microprocessor,” Proc. Compcon,
IEEE CS Press, 1995, pp. 285-291.

20. S.P. Song, “IBM’s Power3 to Replace P2SC,”
Microprocessor Report, Micro Design
Resources, Vol. 11, No. 15, 1997, pp. 23-27.

21. L. Gwennap, “MIPS R10000 Uses Decou-
pled Architecture,” Microprocessor Report,
Micro Design Resources, Vol. 8, No. 14,
1994, pp. 18-22.

22. L. Gwennap, “MIPS R12000 to Hit 300 MHz,”
Microprocessor Report, Micro Design
Resources, Vol. 11, No. 13, 1997, pp. 1,6-7,17.

23. N. Patkar et al., “Microarchitecture of HaL’s
CPU,” Proc. Compcon, IEEE CS Press,
1995, pp. 259-266.

24. L. Gwennap, “Intel’s P6 Uses Decoupled
Superscalar Design,” Microprocessor
Report, Micro Design Resources, Vol. 9, No.
2, 1995, pp. 9-15.

25. L. Gwennap, “Klamath Extends P6 Family,”
Microprocessor Report, Micro Design
Resources, Vol. 11, No. 2, 1997, pp. 1, 6-8.

26. Pentium III Processor, Product Overview,
Intel Corp, Santa Clara, Calif., 1999.

27. J.S. Liptay, “Design of the IBM Enterprise
Sytem/9000 High-End Processor,” IBM J.
Research and Development, Vol. 36, No. 4,
July 1992, pp. 713-731.

28. B. Burkhardt, “Delivering Next-Generation
Performance on Today’s Installed Computer
Base,” Proc. Compcon, IEEE CS Press,
1994, pp. 11-16.

29. Cyrix 686MX, Cyrix Corporation, Richardson,
Texas, Order No. 94329-00, July 1997.

30. L. Gwennap, “NexGen Enters Market with
66-MHz Nx586,” Microprocessor Report,
Micro Design Resources, Vol. 8, No. 4, 1994,
pp. 12-17.

31. M. Slater, “AMD’s K5 Designed to Outrun
Pentium,” Microprocessor Report, Micro
Design Resources, Vol. 8, No. 14, 1994,

pp. 1-11.
32. B. Shriver and B. Smith, The Anatomy of a

High-Performance Microprocessor, IEEE CS
Press, 1998.

33. K. Diefendorff, “K7 Challenges Intel,” Micro-
processor Report, Micro Design Resources,
Vol. 12, No. 14, 1998, pp. 1, 6-11.

34. L. Gwennap, “Nx686 Goes Toe-to-Toe with
Pentium Pro,” Microprocessor Report,
Micro Design Resources, Vol. 9, No. 14,
1995, pp. 1, 6-10.

35. D. Sima, “Superscalar Instruction Issue,”
IEEE Micro, Sept.-Oct. 1997, pp. 29-39.

36. V. Popescu et al., “The Metaflow Architec-
ture,” IEEE Micro, June 1991, pp. 10-13, 63-
71.

37. T. Monreal et al., “Delaying Physical Regis-
ter Allocation Through Virtual-Physical Reg-
isters,” Proc. MICRO-32, IEEE CS Press,
1999, pp. 186-192.

38. S. Wallace and N. Bagheryadeh, “A Scalable
Register File Architecture for Dynamically
Scheduled Processors,” Proc. 1996 Conf.
Parallel Architectures and Compilation Tech-
niques, 1996, pp. 179-184.

39. A. González et al., “Virtual Registers,” Proc.
Third Int’l Symp. High-Performance Com-
puter Architecture, IEEE CS Press, 1997, pp.
364-369.

40. A. González, J. González, and M. Valero,
“Virtual-Physical Register,” Proc. Fourth Int’l
Symp. High-Performance Computer Archi-
tecture, IEEE CS Press, 1998, pp. 175-184.

41. S. Jourdan et al., “A Novel Renaming
Scheme to Exploit Value Temporal Locality
Through Physical Register Reuse and Unifi-
cation,” Proc. MICRO-31, IEEE CS Press,
1998, pp. 216-225.

42. J.E. Smith and A.R. Pleszkun, “Implement-
ing Precise Interrupts in Pipelined Proces-
sors,” IEEE Trans. Computers, IEEE CS
Press, Vol. C-37, No. 5, 1988, pp. 562-573.

43. M. Johnson, Superscalar Microprocessor
Design, Prentice Hall, Englewood Cliffs,
N.J., 1991.

44. G.S. Sohi and S. Vajapayem, “Instruction
Issue Logic for High Performance, Inter-
ruptible Pipelined Processors,” Proc. 14th
ISCA, IEEE CS Press, 1987, pp. 27-36.

45. D. Sima, “The Design Space of Shelving,”
J. Systems Architecture, Vol. 45, No. 11,
1999, pp. 863-885.

82

RENAMING REGISTERS

IEEE MICRO

Dezsö Sima is the dean of the John von Neu-
mann Faculty of Informatics at Budapest
Polytechnic, Hungary. He has taught com-
puter architecture at the Technical Universi-
ty of Dresden; at Kandó Polytechnic,
Budapest; and at South Bank University, Lon-
don; and been a guest lecturer on computer
architectures at several European universities.
He was the first professor to hold the
Barkhausen Chair at the Technical Universi-
ty of Dresden. His research interests include
computer architectures and computer-assist-
ed teaching and learning. Sima holds an MSc
degree in electrical engineering and a PhD

degree in telecommunications, both from the
Technical University of Dresden, Germany.
He has authored more than 40 papers and a
book used in advanced architecture courses.
He served as president of the John von Neu-
mann Computer Society in Hungary and is
an IEE Fellow and a member of the IEEE.

Direct comments about this article to the
author at Budapest Polytechnic, John von
Neumann Faculty of Informatics, PO Box
112, H-1431 Budapest 8, Hungary;
sima@bmf.hu.

83SEPTEMBER–OCTOBER 2000

January-February
Hot Interconnects

This issue focuses on the hardware and software architec-
ture and implementation of high-performance interconnec-
tions on chips. Topics include network-attached storage; voice
and video transport over packet networks; network interfaces,
novel switching and routing technologies that can provide dif-
ferentiated services, and active network architecture.
Ad close date: 2 January

March-April
Hot Chips

An extremely popular annual issue, Hot Chips presents the
latest developments in microprocessor chip and system tech-
nology used to construct high-performance workstations and
systems.
Ad close date: 1 March

May-June
Mobile/Wearable computing

The new generation of cell phones and powerful PDAs has
made mobile computing practical. Wearable computing will
soon be moving into the deployment stage.
Ad close date: 1 May

July-August
General Interest

IEEE Micro gathers together the latest details on new devel-
opments in chips, systems, and applications.
Ad close date: 1 July

September-October
Embedded Fault-Tolerant Systems

To avoid loss of life, certain computer systems—such as
those in automobiles, railways, satellites, and other vital sys-
tems—cannot fail. Look for articles that focus on the verifi-
cation and validation of complex computers, embedded
computing system design, and chip-level fault-tolerant designs.
Ad close date: 1 September

November-December
RF-ID and noncontact smart card applications

Equipped with radio-frequency signals, small electronic tags
can locate and recognize people, animals, furniture, and other
items.
Ad close date: 1 November

IEEE Micro 2001 Editorial Calendar

IEEE Micro is a bimonthly publication of the IEEE Computer Society. Authors should submit paper proposals to micro-

ma@computer.org, include author name(s) and full contact information.

